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a b s t r a c t

Learning knowledge from different tasks to improve the general learning performance is crucial for
designing an efficient algorithm. In this work, we tackle the Multi-task Learning (MTL) problem, where
the learner extracts the knowledge from different tasks simultaneously with limited data. Previous
works have been designing the MTL models by taking advantage of the transfer learning techniques,
requiring the knowledge of the task index, which is not realistic in many practical scenarios. In
contrast, we consider the scenario that the task index is not explicitly known, under which the features
extracted by the neural networks are task agnostic. To learn the task agnostic invariant features, we
implement model agnostic meta-learning by leveraging the episodic training scheme to capture the
common features across tasks. Apart from the episodic training scheme, we further implemented a
contrastive learning objective to improve the feature compactness for a better prediction boundary
in the embedding space. We conduct extensive experiments on several benchmarks compared with
several recent strong baselines to demonstrate the effectiveness of the proposed method. The results
showed that our method provides a practical solution for real-world scenarios, where the task index
is agnostic to the learner and can outperform several strong baselines, achieving state-of-the-art
performances.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

General machine learning methodologies usually aim to solve
ndividual problems, where the learning model is generally trained
nd tested on a single dataset. This paradigm assumes that the
raining and testing data are from the same data distribution.
lthough impressive progress in many applications has been
chieved in recent years with the help of deep neural networks, a
arge amount of labelled data is still required to ensure successful
odel training. Obtaining the labelled data can be expensive in
any practical scenarios. For example, collecting and annotating

abels can be very prohibitive when designing an intelligent
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healthcare system, developing a perception model for intelligent
vehicles or designing a prediction model of multiple objects. In
many scenarios, we can only have several datasets of relatively
small size or with limited labelled data from each dataset. We
need to design a learning model that can leverage the knowledge
from each of them.

To this end, Multi-task Learning (MTL) aims to simultaneously
learn the shared knowledge among different tasks so that one
can reduce the label annotations. MTL has been adopted in many
research areas, including computer vision (e.g. Georgescu et al.,
2021; Yu, Kumar et al., 2020), natural language processing (e.g.
Chen, Zhang, & Yang, 2021), healthcare applications (e.g. Gupta
et al., 2022; Li, Carlson et al., 2018; Moeskops et al., 2016; Nie
et al., 2016) , and autonomous driving systems (e.g. Yu, Chen
et al., 2020) etc. The goal of MTL considered in our work is to
learn from limited data from several tasks so that the model can
improve the overall learning performances on all the tasks (see
Fig. 1).

Previous works (e.g. Shui, Abbasi, Robitaille, Wang, & Gagné,
2019; Zhou, Chaib-draa & Wang, 2021; Zhou, Shui et al., 2021)
have investigated the MTL problems in the context of represen-
tation learning aspects on minimizing the generalization errors.
stic contrastive training for multi-task learning. Neural Networks (2023),
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Fig. 1. Learning problems considered in our work. The model is given
with the data from several tasks, aiming to learn from the mixed data
(task-index-agnostic) and make the prediction for each task.

This kind of approach lies in the idea that the tasks share some
commonalities, which can guide the learner to take advantage of
the feature similarities across tasks to efficiently learn the cross-
task information by either adversarial training (Mao, Liu, & Lin,
2020; Shui et al., 2019) or statistical distribution matching (Zhou,
Chaib-draa & Wang, 2021).

Although the performance was improved, this stream of ap-
roaches still requires an explicit task index when training the
odel, i.e., when training the model, they need to know from
hich task the data is coming. In practice, on the contrary, we
annot have distinguishable dataset collections, i.e., we may have
ixed data from different tasks (task agnostic data, as shown

n Fig. 1). For example, one may have a large ensemble of data
ollected from different task scenarios and wants to train a model
n this pile of data but test it on a specific task. Considering a mo-
ile robot equipped with a machine learning-based vision system,
t may need to operate under different working conditions e.g.,
ndoor environment with lighting illumination or outdoor en-
ironment in the midnight. Thus, the model should be trained
eforehand with various data from different working conditions
hen designing the robot. When deploying the robot, it will be
ypically operated in certain task conditions (e.g., running indoors
for two hours). To this end, the model must learn data from
different tasks while operating under certain tasks. If we apply
some existing MTL algorithms (e.g. Shui et al., 2019; Zhou, Chaib-
draa & Wang, 2021), which require the task index for training,
the cost for pair-wised task training will be expensive since it will
request pair-wised training. Furthermore, Zhou, Shui et al. (2021)
attempted to relax the task index, but the performance dropped
off. Therefore, we need to build a MTL model that can learn from
task-agnostic data that does not require the task index and can
perform well on certain tasks.

To this end, we implement the episodic training scheme origi-
nating from model agnostic meta-learning method (Finn, Abbeel,
& Levine, 2017) to learn the mixed data, allowing the model
to adapt quickly to new data distributions. The intrinsic idea
of adopting this method lies in simulating the data distribu-
tion shifts across tasks through the episodic training scheme
and leveraging the bi-level optimization process to improve the
model. This approach has shown improved performances in many
aspects of transfer learning, including domain adaptation
(Volpi et al., 2018) and domain generalization (Li, Yang, Song &
Hospedales, 2018).

However, leveraging the shared knowledge using the meta-
learning approach remains problematic. For example, Dou, de Cas-
tro, Kamnitsas, and Glocker (2019) has demonstrated that this
kind of approach may lead to some feature misalignment prob-
lems, which refers to the situation where the features are over-
lapped with each other in the extracted semantic feature space.
Besides, Zhou, Jiang, Shui, Wang, and Chaib-draa (2021) also
showed that only leveraging the invariant features across differ-
ent distributions may lead the feature space to become indiscrim-
inative. To alleviate this issue, the learner should also leverage the
label similarities for better decision boundaries (Zhou, Jiang et al.,
2

2021). One solution is to constrain the label similarity when ex-
tracting the common features across tasks and to simultaneously
leverage the similarities to get the class-specific cohesion and
separation feature space for all the tasks. Recent works (e.g. Dou
et al., 2019; Zhou, Jiang et al., 2021) have proposed to improve
learning performance by adopting metric learning objectives.
However, the metric learning objectives usually require a large
batch size to ensure the pair relations when training the model,
leading to high computational costs.

To efficiently extract the feature similarities, we propose lever-
aging the data’s label information by learning the task-agnostic
features with a contrastive learning objective. The contrastive
learning approaches have been an active research topic and have
been widely studied in many different learning regimes. The core
idea of contrastive learning is to leverage the pairs of feature
augmentations of training examples to define a classification task
for feature embeddings (Ho & Nvasconcelos, 2020). In the MTL
problems, we can implement contrastive learning techniques to
leverage the feature similarities for the input data from different
tasks. The intuition is that if the instances belong to the same
class, then the model can map them together in the feature space;
conversely, if the instances are from different classes, we can push
them apart. Therefore, we apply a contrastive learning objective
for local feature relation persistence along with the episodic
training scheme implemented for global feature extraction across
tasks.

To summarize, the contributions of our work are trifold:

• We propose a new strategy to learn task-agnostic data by
incorporating the episodic training scheme of meta-learning
to allow the model to extract the cross-task knowledge.
• We design a mechanism to encourage the feature com-

pactness for better prediction performance by introducing
a contrastive learning objective that leverages the feature
similarities for MTL.
• We then incorporate the cross-task knowledge transfer with

local feature compactness and propose a novel MTL frame-
work that globally learns cross-task data and locally ex-
ploits the similarities of classes that enhance the feature
compactness.

We proposed the Episodic Contrastive Multi-task Learning algo-
rithm. We conducted extensive experiments on several bench-
marks, comparing against some recent strong baselines to
evaluate the effectiveness of the proposed method to demon-
strate the effectiveness of our algorithm.

We first evaluated our method with seven recent baselines,
trained with task indexes, while ours does not require the task
index. The empirical results showed that our method outper-
forms most baseline methods and achieves state-of-the-art per-
formance on these benchmark datasets, especially when dealing
with limited data. This demonstrates that although our method
did not take the task index information, it can still outperform the
methods trained with task index. Furthermore, in Section 5.5, we
showed that when the task index of the input data is unavailable,
recent strong baselines can perform worse. Thus, our method pro-
vides a more practical solution for real-world learning problems
where the task index is not usually accessible to the learner.
Besides, the visualized feature alignment performance further
confirms the effectiveness of our method.

The rest of this article is organized as follows. Section 2 sum-
marizes recent works most connected to our proposed work.
Section 3 introduces the necessary background knowledge for
this work. Section 4 presents the full methodology and algorithm
of our work. Section 5 demonstrates the experimental results to
show the effectiveness of the proposed algorithm.
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. Related works

Our work mainly relates to representation learning-based
ultitask learning, model-agnostic meta-learning, and contrastive

earning.

.1. Multi-task learning

Multi-task Learning (MTL) aims to learn several individual
asks simultaneously. Our work is mostly related to representa-
ion learning-based approaches. In this context, Maurer, Pontil,
nd Romera-Paredes (2016) firstly analysed the generalization
isk of representation-based MTL approaches. Then, Murugesan,
iu, Carbonell, and Yang (2016), Pentina and Lampert (2017)
ackled MTL with a weighted summation of loss functions. Chen,
adrinarayanan, Lee, and Rabinovich (2018) proposed a balanced
oint training method over all the tasks with the same rate. Wang
t al. (2023) studied the notion of performance gap, which the-
retically provide new insights and motivates a novel principle
or designing strategies for knowledge sharing and transfer. Shui
t al. (2019), Zhou, Shui et al. (2021) investigated the gener-
lization property by leveraging the task similarities under the
dversarial training framework (Ganin et al., 2016). One draw-
ack of Shui et al. (2019), Zhou, Shui et al. (2021) is that their
heoretical results originated from the domain adaptation the-
ry, requiring extra assumptions (e.g. Ben-David et al., 2010,
he combined error across tasks is small), which may not hold
n practice. Thus, Zhou, Chaib-draa and Wang (2021) leveraged
he label and semantic information across tasks. However, in
ractical concerns, Zhou, Chaib-draa and Wang (2021) requires
aintaining a matrix of the feature centroids. Besides, most of

he previous work (e.g. Mao et al., 2020; Shui et al., 2019; Zhou,
haib-draa & Wang, 2021; Zhou, Shui et al., 2021) require an
xplicit task index. In Section 5.5, we show that the baselines’
erformance became worse when the task indexes were not
vailable. Thus, in this work, we provide an algorithm that does
ot have to take the task index into account, i.e., task agnostic
raining. Furthermore, requiring task index is not practical in
ome real-world applications. For example, Wang et al. (2020)
ackled a reinforcement learning-based navigation problem with
TL algorithms where the environment for the agent is ag-
ostic. Gao et al. (2020) proposed a neural architecture search
ethod for MTL problems that share similar insights of our work
n handling the task agnostic data by conducting a regularization
erm on the model’s architecture weights. At the same time, ours
ocused on the representation learning side of the MTL algorithm.

Furthermore, the conventional MTL problems aim to solve
fixed number of known tasks and are usually implemented

s single-level optimization without the meta-learning objective.
revious work has leveraged the meta-learning methodologies for
easuring prioritizes (Lin, Baweja, Kantor, & Held, 2019) of tasks
nd learning the task relations (Franceschi, Donini, Frasconi, &
ontil, 2017). In this work, we propose a novel episodic training
cheme to learn from task-agnostic task data, allowing the model
o adapt to unknown tasks without measuring task relations.

Besides, MTL showed improved performances in handling data
rom various tasks, provided a practical solution for real-world
pplications. For example, Gupta et al. (2022) tackled the multi-
ental classification problems and presented a novel feature rep-

esentation learning approach for the brain–computer interaction
pplications, which indicates a promising direction for applying
TL framework for intelligent health management systems. Song,

eong, and Kim (2022) studied the obstacle detection problems for
elf-driving systems with a MTL framework, showing improved
etection performances.
3

2.2. Learn transferable features using model agnostic meta learning

Meta-learning, a.k.a. learning to learn, aims to learn to im-
prove the learning algorithm itself by leveraging the experience
of several different learning episodes. A comprehensive survey
on the recent progress of meta-learning with neural networks
can be referred to Hospedales, Antoniou, Micaelli, and Storkey
(2021). In this work, we consider meta-learning as a generic
knowledge transfer method that can provide new perspectives
for related research topics in transfer learning, e.g. Domain Adap-
tation (DA) (Volpi, Larlus, & Rogez, 2021) and Domain General-
ization (DG) (Dou et al., 2019; Li, Yang et al., 2018). The core
idea of learning transferable features using model agnostic meta-
learning is to adopt an episodic training paradigm, i.e., splitting
the available data distributions into the general meta-train and
meta-test subsets at each iteration so that the model can simulate
the task data shift.

In the context of DG, Meta Agnostic Meta-Learning (MAML)
(Finn et al., 2017) was adopted by Li, Yang et al. (2018) to back-
propagate the gradient of the losses of the meta-test tasks (Dou
et al., 2019). Du et al. (2020) proposed to model the shared clas-
sifier model parameters as a probabilistic meta-learning model.
Gong et al. (2021) introduced a setting where the target domain
is assumed as a compound of several unknown domains, which is
treated as a sub-target domain. Then a meta-learning algorithm
is implemented to fuse the sub-target domain together with the
MAML algorithm for handling the generalization process.

In the context of DA, Volpi et al. (2021) adopted the meta-
learning objective to generate some intermediate meta-domains
with the randomized image manipulations to solve the DA prob-
lems. Yue et al. (2021) proposed a self-supervised learning frame-
work for the few-shot DA problem, which not only aligns the
cross-domain features but also captures the category-wise se-
mantic structure of the source and target domain features through
the self-supervised learning process.

In this work, we tackle the MTL problems and cast the problem
of learning common features across tasks into the episodic train-
ing process by simulating the meta-train and meta-test process.

2.3. Contrastive learning

Contrastive learning has been an active research topic for
different learning regimes, including unsupervised (Chen, Korn-
blith, Norouzi, & Hinton, 2020), weakly-supervised (Zheng et al.,
2021), or self-supervised learning (Kim, Tack, & Hwang, 2020).
The contrastive learning methods leverage the feature augmen-
tation pairs of unlabelled training examples to define a classifi-
cation task for feature embeddings. Its core idea lies in building
an encoder to map the inputs generated by some data augmen-
tations to similar features of some random inputs for the dis-
tinguishable features. Contrastive learning has recently been ex-
tended to the supervised setting (Khosla et al., 2020) to leverage
the label similarities. This kind of approach has been widely stud-
ied in different aspects e.g., video representation learning (Kuang
et al., 2021), image captioning (Dai & Lin, 2017) and learning with
noisy labels (Yi, Liu, She, McLeod, & Wang, 2022) etc.

In the context of transfer learning, Motiian, Piccirilli, Adjeroh,
and Doretto (2017) adopts contrastive loss to encourage the
data instances from the same category embedded close to each
other in the feature space. Kang, Jiang, Yang, and Hauptmann
(2019) studied the contrastive learning approach for the unsu-
pervised DA problems, where the contrastive adaptation network
was proposed together with a new metric to leverage the class
similarities.

Since contrastive learning methodology has impressive perfor-
mances in the unsupervised training regime that does not require
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he labelled data, it inspires the source-free DA approaches. For
xample, Thota and Leontidis (2021) explored the contrastive
earning methods for DA problems by training the unlabelled
ource and target domain data, where neither labelled data nor
pre-trained Imagenet model was required. Huang, Guan, Xiao,
nd Lu (2021) studied the unsupervised model adaptation, i.e.,
he source-free UDA problems, by implementing a historical
ontrastive learning method to exploit the historical hypothesis
rained on the sources that can learn both the instance and
ategory level discriminative target representations for source
ree UDA. Wang et al. (2022) adopted a self-supervised con-
rastive training method to leverage the similarities of a certain
ategory. Yang et al. (2022) studied the partial DA problems
y incorporating a contrastive learning objective on top of the
eneral adversarial training to find out the class-discriminative
nformation across domains, which then leads to a contrastive
earning-assisted alignment algorithm. Kim, Yoo, Park, Kim, and
ee (2021) proposed a self-supervised contrastive learning-based
G approach that takes advantage of the positive pairs in the
ontrastive objective as a regularization term to learn trans-
erable domain features. Duboudin et al. (2021) explored the
G problems by designing a reverse contrastive loss for solving
he correlated patterns across domains, which thus helps to
ncourage intra-class diversity to improve learning performances.
Our work lies in a similar insights of incorporating contrastive

earning objectives in the aforementioned DA and DG approaches
o leverage the power of contrastive pairs in addition to the
nowledge-transferring techniques to enhance the feature com-
actness across different data distributions (Dou et al., 2019;
hou, Jiang et al., 2021).

. Background and preliminaries

We start by introducing some necessary notations and prelim-
naries, including background knowledge on meta-learning and
ontrastive learning. Then, we will introduce the methodology
nd the proposed algorithm.

.1. Problem setup

In multi-task learning (MTL), assume we have a set of total
tasks {D̂1, . . . D̂i, . . . D̂M}

M
i=1, each of which is generated by the

nderlying distribution Di over X and by the underlying labelling
unctions fi : X → Y for {(Di, fi)}Mi=1, where X and Y are the input
nd output space, respectively. For a task i, let D̂i = {(xj, yj)}

mi
j=1

e a set of mi training examples drawn independently from Di.
A multi-task learner aims to find M hypothesis: h1, . . . , hM

ver the hypothesis class H to minimize the average expected
isk of all the tasks:

rgmin
h∈H

1
M

M∑
i=1

Ri(hi) (1)

where Ri(hi) ≡ Ri(hi(xi), fi) = Ex∼Diℓ(hi(x), fi(x)) is the expected
isk of task i and ℓ is the loss of hypothesis hi at (x, y). For each
ask i, assume that there are mi examples, the empirical loss of h
on D̂i is defined by R̂i(hi) = 1

mi

∑mi
j=1 ℓ(h(xj), yj).

We consider a classification model consisting of a feature
xtractor Fψ , parameterized by ψ and a task network Tθ param-

eterized by θ. The feature extractor Fψ : X → Z maps the input
feature into a latent feature space Z , which is lower dimensional
than the input space X . The task network Tθ : Z → RK predicts
the label of the extracted features into RK , where K is the total
number of classes in the output space Y . The predication of the
task network is estimated by the softmax operation P(ŷ|x) =
oftmax(T (F (x))). The feature extractor and task network model
θ ψ

4

parameters (ψ, θ) can be optimized w.r.t. a specific task loss. In
this work, we consider the classification model thus we adopt the
general cross-entropy loss as task loss:

ℓtask = −ŷ · log(y). (2)

3.2. Preliminaries on meta learning

Our work is built upon the model-agnostic meta learning (Finn
et al., 2017) approach to extract the transferable features across
tasks. Meta learning is usually cast into a bi-level optimization
process. The data from different distributions DM

i=1 are usually
split into meta-train D(i)

tr and meta-test D(i)
te set. It can be viewed

as the following,

M
min
i=1

θ⋆
◦ ψ⋆L(D(i)

te )

.t. θ⋆
◦ ψ⋆
= argminL(D(i)

tr )
(3)

The model is trained in two steps, first is to learn a base model
that minimizes the risk on all the meta train sets Dtr and then to
adapt to the meta test sets Dte.

3.3. Preliminaries on contrastive learning

Contrastive learning has been widely studied from various
aspects due to its flexibility in leveraging the similarities of input
data no matter whether the data was labelled or not. The funda-
mental idea of contrastive learning is to learn the representations
based on the data augmentations (e.g., crop, resize or rotation
etc.) (Yang et al., 2022). Then, with these augmentations, the
contrastive learning objectives then guide the model to map an
input instance (a.k.a. anchor) to be closer to its positive samples
i.e., its augmentations, and to be far away from its negative
samples.

Denote by xa as an input instance (anchor), x+, and x− as
the positive and negative instance, respectively. Then, for a score
function, the relation of the positive and negative instances to the
anchor can be summarized as

score
[
Fψ(xa;ψ), Fψ(x+;ψ)

]
≫ score

[
Fψ(xa;ψ), Fψ(x−;ψ)

]
(4)

where score means a function that to measure the similarities
between the two features Fψ(x;ψ) and Fψ(x′;ψ). This kind of
framework then inspires a series of self-supervised contrastive
learning methods. In case the labels are available in the MTL
problems, we can leverage the label similarities and design the
learning objective function to guide the model to bring the fea-
tures from the same category close to each other while pulling
the instances from different categories to far from each other,
regardless of which task they come from, i.e., to apply con-
trastive objective to the task-agnostic data to improve the feature
compactness. We will elaborate on this aspect in Section 4.3.

4. Methodology

In this section, we introduce the main methodology of our
work. Specifically, in Section 4.1, we illustrate an overview of
our method. Then, in Section 4.2 and Section 4.3, we introduce
the episodic training scheme with meta-learning and contrastive
learning for similarity mining, respectively. Lastly, in Section 4.4,
we present the proposed algorithm.
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Fig. 2. (a) The main workflow of our method. The learner takes the input data mixed from several tasks and learn to predict for each certain task. (b) The mixed
data are learned through an episodic meta learning scheme which allows us to not rely on the task indexes. (c) On top of that, in order to further promote feature
compactness, we also implement a contrastive learning objective which enables the similarities of instances.
t
n
a
t
f

4.1. Methodology overview

As aforementioned, our work tackles the multi-task learning
roblems to learn from the task-agnostic data, i.e., the input data
re mixed, and the learner has no prior knowledge about the task
ndex of the mixed data. In order to learn the task-agnostic data,
e adopt an episodic training scheme originated from model
gnostic meta-learning that simulated distribution shift across
asks to learn the shareable features. In each training round, in ad-
ition to the episodic learning for the shareable features, we still
eed to promote the feature compactness at the category level by
ncorporating a contrastive learning objective. An overview of the
odel is illustrated in Fig. 2, and we will introduce the detailed
ethodology in the following sections.

.2. Episodic training for learning multi-task features

In this work, we consider the scenario in which the data
re given to the learner in a pool without knowing the task
ndex. Regarding MTL, we assume there are M related task dis-
ributions with different statistics. As aforementioned, inputs to
he model are mixed and are task agnostic. To learn from such
ask-agnostic data with different data distributions, we adopt the
eta-learning notion to split the data into different subsets so

hat the learner can extract the invariant features from differ-
nt data distributions. The intrinsic idea of using meta-learning
o learn the task-agnostic features is to implement an episodic
raining scheme, which is rooted in the model-agnostic meta-
earning method (Finn et al., 2017). In order to capture the data

istribution shift, the model is trained with several episodes to (

5

simulate the shift across task data distributions (Li, Yang, Song, &
Hospedales, 2017).

The model is trained on the limited task data and then tested
with new task data. To achieve this, at each episodic iteration,
input data from all the tasks are split into two subsets: meta-train
set T and meta-test set T̂ ; thus we have |T |+ |T̂ | = M . This kind
of data splitting does not require indexes of the task distributions,
and the input data are randomly split. Through this process, we
can mimic the real cross-task data shift over different learning
tasks to train a model to achieve good generalization performance
on the final testing task data.

Meta-train. In line with our learning goal of MTL to learn the
task-agnostic data, the model is trained on a sequence of sim-
ulated episodic subsets of data with the data shift across tasks.
Specifically, for each episodic iteration, during the meta-train
phase, the model is updated on all the T meta-train tasks. The
loss for the general meta-train phase can be computed as

LT =
1
|T |

|T |∑
i=1

1
Ni

Ni∑
j=1

ℓθ,ψ(ŷ
(i)
j , y(i)j ) (5)

where y(i)j refers to the label of the jth data instances in the ith
ask, ŷ(i)j is the predicted label of the input instance x(i)j , Ni is the
umber of total instances in task i, and ℓ is the task loss function
forementioned, i.e., the cross-entropy loss in Eq. (2). Then, in
he meta-train phase, the model can then be updated via the
ollowing,

ψ′, θ′) = (ψ, θ)− α∇ L (6)
ψ,θ T
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Eq. (6) leads to improved task accuracy on the meta-train sets
f the input data of the prediction model Tθ ◦ Fψ . Once the meta-
rain optimization is finished (i.e., got the updated ψ′, θ′), we can
urther apply the meta-test step.

eta-test. For each mini-batch, we also evaluate the model on
eta-test set. The meta-test process simulates a real data shift of
asks with different statistics. The loss can be computed as,

T̂ (·) =
1
|T̂ |

|T̂ |∑
i=1

1
Ni

ℓθ′,ψ′ (ŷ
(i)
j , y(i)j ) (7)

where T̂ is the meta-test set, |T̂ | refers to the number of simulated
asks in the meta-test set. Unlike Eq. (5) here ŷ(i)j refers to the
redicted label on the updated model (θ′,ψ′).
To summarize, the learning objective of the episodic train-

ng scheme, meta-train and meta-test phases at each episodic
teration

inLmt = min
θ,ψ

LT (θ,ψ)+ βLT̂
[
(θ,ψ)− α∇LT (θ,ψ)

]
(8)

here α is the learning rate for the meta-train optimization and
is a coefficient to regularize the meta-test phase. This opti-
ization can be efficiently optimized through the general gra-
ient based optimization method (e.g., SGD or Adam) for neural
etwork.
For each training round, we also encourage feature compact-

ess with a contrastive learning objective, which we will intro-
uce in the next section.

.3. Contrastive learning for feature compactness

As pointed out by previous works (Dou et al., 2019; Zhou, Jiang
t al., 2021), only extracting the shareable features through the
pisodic training scheme is not sufficient for the multiple data
istribution feature alignment and may lead to feature misalign-
ent issues (Zhou, Chaib-draa & Wang, 2021). Thus, apart from

he invariant feature learning with the episodic training scheme,
e still have to constrain the learning process to promote the

eature compactness (Kamnitsas et al., 2018).
To this end, in addition to performing the feature alignment

cross tasks, i.e., global alignment across tasks with the episodic
raining scheme mentioned above, we further encourage the fea-
ure compactness via a contrastive learning objective as local
ample clustering function to enhance the local feature align-
ent. The goal of the local contrastive learning objective is to take
dvantage of the power of the similarities of input instances from
he mixed task data. Thus, we incorporate contrastive learning
ogether with meta-learning. That is, the data that come from the
ame category should stay close to each other in the feature space,
hile those from different categories should stay apart. Therefore,
fter learning invariant features through the episodic training
rocess, we further promote the feature compactness in the ex-
racted feature space, regardless of which task the data comes
rom.

In line with our MTL problems, the labels of the training
ample are available to the model. In this case, as pointed out
y Khosla et al. (2020), the contrastive learning paradigm has the
ntrinsic ability to find out the hard positive or negative pairs,
hich can thus be incorporated with the knowledge transfer
rocess with episodic training to improve the model’s ability to
istinguish the features.
The general self-supervised contrastive loss (Chen et al., 2020;

enaff, 2020) can be computed as,

=

∑
Li = −

∑
log

exp(zi · zp/τ )∑
exp(z · z /τ )

(9)

i∈A i∈A a∈A,a̸=i i a L

6

Algorithm 1 The proposed Episodic Contrastive Multi-task
Learning algorithm
Require: Mixed, task-agnostic input data from M different tasks
{Di}

M
i=1

Ensure: Neural network models and parameters: feature extrac-
tor Fψ parameterized by ψ and task network Tθ parameterized
by θ

1: for mini-batch of samples {(x(i), y(i))} from input data do
2: Compute the Meta-train objective via Eq. (3)
3: Update the model through Eq. (6)
4: Compute the Meta-test objective via Eq. (7)
5: Update the model by solving Eq. (8)
6: Extract intermidate features and compute the contrastive

learning objective via Eq. (10)
7: Update ψ, θ by solving Eq. (12) with learning rate η:

ψ← ψ − η
∂(Lmt + γLcon)

∂ψ
,

θ← θ − η
∂(Lmt + γLcon)

∂θ

8: end for
9: return Optimal model parameters ψ⋆ and θ⋆

where z is the extracted features, τ ∈ R+ is a scalar temper-
ature parameter. A is a set of anchors, which usually refers to
the augmented samples in self-supervised learning. Index a is
usually referred as an anchor and p is usually considered as a
positive sample. In our MTL setting, the labels are available to the
learner, and the model can learn the contrastive features under
supervised training mode,

Lcon =
∑
i∈A

Li =
∑
i∈A

−1
|P|

∑
p∈P

log
exp (zi · zp/τ )∑

a∈A,a̸=i exp(zi · za/τ )
(10)

here P ≡ {p ∈ A : yp = yi} is the set of the positive pairs,
.e., the instances with the same labels of the anchor regardless
hich task they belong to. In terms of MTL problems where the

abels are accessible to the learner, we can easily set the positive
et as those instances that have the same labels as the anchor,
egardless of which task they come from. During training, the
ontrastive learning objective is computed over the mixed data
rom all the tasks, i.e., the task-agnostic data. Through employing
he supervised contrastive learning process, the features from
ifferent tasks can be well aligned regardless of task indexes.
Then, at each training round, the gradients of the contrastive

earning objective w.r.t. the extracted features can be computed
y,

∂Li

∂zi
=

1
τ

{ ∑
p∈P

zp(
exp

(
z i · zp/τ

)∑
a∈A exp (z i · za/τ)

−
1
|P|

)

+

∑
n∈N

zn(
exp (z i · zn/τ)∑

n∈N exp (z i · zn/τ)
)
} (11)

here N ≡ {n ∈ A : yn ̸= yi} is the set of negative samples. In
ur MTL setting, the negative samples refer to the instances that
ave different labels with the anchor. With the major components
ntroduced above, we can summarize the full proposed method in
he following section.

.4. Full objective and proposed algorithm

The learning objective of the proposed method majorly has
wo components that can be summarized as,

= L + γL (12)
mt con
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Table 1
The empirical comparison results of the Multi-task Learning algorithms (in %) on the digits datasets (including MNIST, MNIST-M and SVHN) with LeNet-5 model as
the feature extractor. The baseline methods are trained with task indexes while ours is task-index-agnostic.

3K 5K 8K

Approach MNIST MNIST-M SVHN Avg. MNIST MNIST-M SVHN Avg. MNIST MNIST-M SVHN Avg.

MTL-Uniform 93.9± 3.2 77.1± 2.6 57.3± 0.4 76.1 96.3± 1.2 79.1± 3.1 68.0± 2.9 81.1 97.7± 0.5 83.7± 2.2 71.4± 0.9 84.2
MTL-Weighed 89.3± 3.3 76.4± 3.1 70.2± 1.8 78.3 91.8± 2.7 74.2± 0.9 73.6± 3.1 79.8 92.3± 2.6 76.9± 3.1 74.1± 1.6 81.1
Adv.H 90.1± 1.2 81.2± 1.3 70.8± 0.5 80.7 91.9± 2.6 83.7± 1.4 73.6± 1.6 82.9 94.9± 1.6 85.2± 0.3 79.1± 0.3 86.4
Adv.W 96.8± 0.6 81.3± 0.7 69.5± 1.1 82.5 97.5± 0.2 83.4± 0.4 72.6± 1.2 84.5 98.1± 0.3 84.3± 0.4 75.4± 1.1 86.1
Multi-Obj. 97.5± 0.3 76.9± 0.5 54.8± 0.3 76.4 98.2± 0.2 80.2± 0.7 61.2± 0.8 79.9 98.5± 0.3 82.8± 0.5 69.9± 0.9 83.7
AMTNN 96.9± 0.2 80.8± 1.5 77.1± 0.9 84.9 97.7± 0.1 83.6± 1.1 78.4± 0.8 86.6 98.1± 0.2 83.1± 2.1 80.2± 1.3 87.1
SMTL 95.4± 0.3 80.1± 0.5 81.5± 0.6 85.7 95.8± 0.3 82.4± 0.4 83.3± 0.3 87.2 96.0± 0.3 83.9± 0.4 85.4± 0.2 88.4

Ours 97.5± 0.4 80.7± 0.9 79.7± 1.1 86.0 97.6± 0.3 82.9± 0.5 81.9± 0.6 87.5 97.9± 0.2 84.4± 0.4 84.8± 0.3 89.1
5

Z
g
s

where Lmt and Lcon are the objective functions defined in Eq. (8)
nd Eq. (10), respectively; γ is a coefficient to regularize the
ontrastive learning objective.
We present the architecture of the model in Fig. 2. The model

akes the input data mixed from several tasks and learns to pre-
ict each specific task. The mixed task data are learned through
n episodic training scheme that allows us to not rely on the
ask indexes. Furthermore, in order to further promote feature
ompactness, we also implement a contrastive learning objective
hich enables the model to leverage the similarities of task

nstances. When deploying, the model is then tested on specific
asks. The proposed Episodic Contrastive Multitask Learning (Epi-
onMTL) method is presented in Algorithm 1. With the proposed
ethod, we empirically demonstrate the effectiveness of our
ethod in the next section.

. Experiments results

In order to demonstrate the effectiveness of our proposed
ethod, we evaluate the algorithms on several benchmarks. We

irst evaluate the MTL algorithms with the baselines, where we
llow the baseline methods to have access to the task index
nformation, while ours was tested under the task-index-agnostic
cenario. Then, in Section 5.5, we compare the performances of
he algorithms under the scenario where the task indexes are
ot available to the learner. Lastly, in Section 5.6, we conduct
everal experiments to further investigate the insights of the
ethodology.

.1. Datasets

We compare our proposed algorithm against recent principled
aselines on the following benchmarks:

• Digits: The digits benchmark considered in this work is
a collection of several datasets, including MNIST (LeCun,
Bottou, Bengio, Haffner, et al., 1998), MNIST-M (Ganin et al.,
2016) and SVHN (Netzer et al., 2011). The model aims to
learn these tasks simultaneously.
• Office-31 (Saenko, Kulis, Fritz, & Darrell, 2010): It is a vision

benchmark widely used in transfer learning related prob-
lems which consists of three different tasks: Amazon, Dslr
and Webcam.
• Office-Caltech (Gong, Shi, Sha, & Grauman, 2012): This

benchmark contains the shared classes between the Office-
31 and Caltech256, including four different tasks: Amazon
(A), Dslr (D), Webcam (W) and Caltech (C) for 10 different
classes.
• Office-Home (Venkateswara, Eusebio, Chakraborty, & Pan-

chanathan, 2017): This one is a more complex benchmark,
containing four different tasks: Art, Clipart, Product and Real
World, with 65 classes in each of the four tasks.
7

.2. Baselines

We follow the previous work (Zhou, Chaib-draa &Wang, 2021;
hou, Shui et al., 2021) to evaluate the performance of the al-
orithms when handling limited data. In this work, we consider
everal principled approaches:

• MTL-Uniform: The MTL model is composed of a feature
extractor and a task-specific classifier. The model learns
all the tasks simultaneously while optimizing the average
summation loss: 1

M

∑M
i=1 R̂i(ψ, θi), where θi is a task-specific

classifier for task i, i.e., optimize the whole model with the
loss uniformly computed from all the tasks.
• MTL-Weighted: Adapted from Murugesan et al. (2016), a

MTL model is built to learn a weighted summation of losses
over different tasks: 1

T

∑T
t=1 R̂αt (ψ, θt ), where the weight

coefficient αt for a certain task t is measured by a proba-
bilistic interpretation.
• Adv.H: An adversarial learning-based approach adapted from

Liu, Qiu, and Huang (2017) by using the same loss func-
tions while the adversarial objective is trained with the
H-divergence.
• Adv.W: Similar with Adv.H while replacing the adversarial

training objective Adv.H with Wasserstein distance based
adversarial training method as per (Shen, Qu, Zhang, & Yu,
2018).
• Multi-Obj. (Sener & Koltun, 2018): A methodology where

the MTL problem was cast as solving a multi-objective prob-
lem.
• AMTNN (Zhou, Shui et al., 2021): A Multi-task Learning

algorithm that takes advantage of task feature similarities
via adversarial training using Wasserstein distance and can
update the task relations automatically.
• SMTL: A methodology proposed in Zhou, Chaib-draa and

Wang (2021), where the task distributions are matched via
controlling the semantic conditional distance as well as the
label distribution divergence.

Note that these baselines all require task indexes when train-
ing the model. In the following sections, we first evaluate the
baseline methods under the scenario that the task index are
available to the learner while our approach keeps task-index-
agnostic. In this respect, we present in Table 1 to Table 4 the
results of the baseline method with task index while ours is under
the task-index-free setting. We demonstrate that although the
baselines can have task index information while ours does not,
our method can still outperform those baselines. Later in Sec-
tion 5.5, we further evaluated the performance of all the baselines
under the task-index-agnostic setting for a more fair comparison
and to demonstrate the MTL algorithms’ performances when task
indexes are unavailable.

5.3. Data pre-processing and training details

In order to demonstrate the effectiveness of our method for
handling limited data, we randomly selected parts of the dataset
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Table 2
Empirical results comparison (accuracy in %) of the Multi-
task learning algorithms on the Office-Caltech benchmark using
AlexNet as the feature extractor. The baseline methods are trained
with task indexes.
Method Amazon Caltech Dslr WebCam Avg.

MTL-Uniform 84.2± 1.1 80.6± 0.8 90.8± 2.3 81.8± 0.9 84.3
MTL-Weighted 88.1± 0.2 81.5± 0.9 94.9± 0.2 94.2± 0.5 88.6
Adv.H 81.5± 0.5 73.8± 1.8 91.4± 2.1 86.1± 1.4 83.3
Adv.W 84.9± 0.4 80.9± 0.9 94.5± 2.2 87.5± 1.5 86.9
Multi-Obj. 82.3± 0.7 76.7± 2.4 91.2± 1.7 86.8± 0.9 84.3
AMTNN 89.3± 0.9 84.3± 0.6 98.4± 1.3 94.1± 0.7 91.7
SMTL 90.9± 0.4 85.3± 0.5 98.1± 0.8 94.2± 0.6 92.1

Ours 90.4± 0.9 84.1± 0.5 98.4± 0.4 95.8± 0.8 92.2

to train the model. For the Digits benchmark, we randomly select
3k, 5k, and 8k of data instances as per the evaluation protocol
of Zhou, Chaib-draa and Wang (2021), Zhou, Shui et al. (2021) and
select 1k instances as validation set while testing on the whole
est set split of the original dataset. The image size of SVHN is
2 × 32 while the image size of MNIST and MNIST-M is 28 × 28;
hus, we resize the images of these three datasets to 28 × 28
ithout any data augmentation.
For the Office-31 and Office-Home benchmark, we randomly

ake 5%, 10% and 20% of the total training data and test with the
ull test set. For Office-31 and Office-Home datasets, we follow
he pre-processing protocol of Zhou, Chaib-draa and Wang (2021)
o first resize the image to 256× 256, then randomly resize crop-
ing to 224 × 224, and finally apply the RandomHorizontalFlip()
unction of PyTorch for the training data.

5.4. Experiments details and test results

We first test our model on digits benchmark with LeNet-
5 (LeCun et al., 1998) model as the feature extractor and a MLP
as a classifier to make the prediction. We train the model with
Adam (Kingma & Ba, 2014) optimizer with an initial learning
rate 1 × 10−3. The learning rate is decayed by 5% for every five
epochs. Besides, for enforcing the regularization, we also enable
the weight decay of the Adam optimizer with decay rate 10−5.
he model was trained for a total of 50 epochs with a mini-batch
ize of 64. The results comparing against baselines on the Digits
atasets are reported in Table 1.
Then, we test our algorithm against the baselines on Office-

altech, Office-31, and Office-Home datasets. For the empirical
valuations on the Office-Caltech dataset, we train the model
ith Adam optimizer with an initial learning rate 1×10−4. Along
ith the training procedure, the learning rate is decayed 5% for
8

every five epochs for a total of 120. The experimental results
on the PACS dataset are reported in Table 2. It can be observed
from the results that our algorithm can outperform the baselines.
Furthermore, the improvement compared to the baseline AMTNN
is not quite significant. It may be due to the small number of data
in Office-Caltech; thus, the features have been well extracted, and
the improvements are relatively small.

For the experiments on Office-31 and Office-Home datasets,
we train the ResNet-18 model as a feature extractor whose output
dimension is 512. Then, a three-layer MLP with bottleneck size
256 is implemented for the prediction. We set γ = 0.1 to
regularize the contrastive learning objective. The model is trained
with Adam optimizer with learning rate 2 × 10−4 as well as the
learning rate decay 5% for every five epochs and with learning
rate 2 × 10−4 as well as the learning rate decay 10% for every
ten epochs with total 120 epochs for Office-31 and Office-Home
dataset, respectively. To encourage the regularization, we set the
weight decay of the Adam optimizer with 10−5. The experimental
results on the Office-31 and Office-Home datasets are illustrated
in Table 3 and Table 4, respectively.

As we can observe from the table, our method can have im-
proved results on these two benchmarks, achieving state-of-the-
art performances. Besides, when the number of training samples
is limited (e.g., with 5% of total training data), our method can
have promising improvement compared to the baseline methods.

Besides, as a remark, the proposed method did not require the
task index for the model, while the baselines are all so needed.
Considering that in real-world scenarios, usually, the data are
task agnostic, our work provides a more realistic methodology
to handle multi-task learning problems. Also, as we can observe
from Table 1 to Table 4, our method can have better improvement
when the number of training instances is limited (e.g., 5% or 10%),
this also confirms the effectiveness of our MTL algorithm when
dealing the limited data.

5.5. Performance of MTL algorithms under task-index-agnostic set-
ting

Note that the baseline results compared in Table 1 to Ta-
ble 4 were obtained with task index to the learner, while ours
was tested with no task index information. Even though our
method is task-index-agnostic, our method can still outperform the
task-index-needed method.

Considering that in real-world applications, the task index of

the input data may not always be available. Thus, we further
Table 3
The empirical comparison results of the Multi-task Learning algorithms (accuracy in %) on the Office-31 dataset with the ResNet-18 model as the feature extractor.
The baseline methods are trained with task indexes.

5% 10% 20%

Approach Amazon Dslr Webcam Avg. Amazon Dslr Webcam Avg. Amazon Dslr Webcam Avg.

MTL-Uniform 61.3± 1.3 71.8± 2.1 72.1± 1.1 68.3 73.2± 0.5 80.6± 1.4 82.1± 0.9 78.6 79.4± 0.8 91.2± 1.0 93.1± 0.8 87.9
MTL-Weighted 63.3± 0.2 87.4± 2.3 84.9± 0.6 78.5 70.6± 1.2 92.1± 0.9 88.4± 1.3 83.7 76.8± 0.9 96.6± 0.7 95.6± 0.5 89.7
Adv.W 66.5± 1.9 71.8± 1.1 69.9± 0.9 69.7 74.7± 1.1 85.9± 0.8 85.7± 0.8 82.1 79.3± 0.6 93.8± 0.4 92.2± 0.9 88.4
Adv.H 65.8± 1.1 73.5± 0.8 71.4± 0.7 70.2 71.0± 0.9 84.1± 0.9 89.4± 0.1 81.4 79.7± 0.5 93.7± 0.7 93.7± 0.6 89.1
Multi-Obj. 68.9± 1.2 72.5± 1.4 72.3± 0.4 71.3 74.6± 0.9 86.8± 1.1 86.9± 0.8 82.8 79.2± 0.8 92.1± 0.6 94.7± 0.6 88.6
AMTNN 63.3± 0.6 80.1± 1.6 85.4± 0.3 79.3 71.3± 1.2 92.8± 0.9 89.6± 1.2 84.6 80.2± 0.9 94.2± 1.2 94.4± 0.9 89.6
SMTL 68.5± 0.6 87.9± 0.8 86.5± 0.5 80.9 75.7± 0.2 92.8± 0.2 90.8± 0.3 86.4 81.1± 0.2 96.5± 0.1 96.1± 0.2 91.2

Ours 69.4± 0.8 87.5± 0.7 86.6± 0.8 81.2 75.4± 0.8 93.2± 0.8 92.2± 0.9 87.0 81.2± 0.5 97.5± 0.6 96.8± 0.5 91.8
Table 4
The empirical results of the Multi-task Learning algorithms (accuracy in %) on Office-home dataset with ResNet-18 as a feature extractor. The baseline methods are
trained with task indexes.

5% 10% 20%

Approach Art Clipart Product Real-world Avg. Art Clipart Product Real-world Avg. Art Clipart Product Real-world Avg.

MTL-Uniform 26.2± 0.3 30.1± 0.2 57.6± 0.1 47.4± 1.1 40.3 35.8± 0.7 43.3± 0.6 67.1± 0.4 56.8± 1.3 50.7 45.5± 0.8 56.1± 0.6 74.4± 0.7 62.6± 0.6 59.6
MTL-Weighted 26.8± 1.6 31.8± 1.8 59.2± 0.4 50.5± 1.2 42.1 38.2± 1.0 45.3± 1.6 69.1± 0.2 58.3± 0.8 52.7 47.9± 0.1 56.7± 0.9 75.6± 0.6 64.8± 0.9 61.2
Adv.W 26.8± 0.8 32.7± 0.5 58.3± 0.9 47.1± 0.4 41.2 38.5± 0.8 44.4± 0.7 67.6± 0.7 59.5± 0.9 52.3 47.9± 0.5 56.7± 0.6 75.4± 1.1 65.7± 0.8 61.3
Adv.H 27.7± 1.4 32.1± 1.5 59.6± 0.7 51.1± 0.9 42.7 39.0± 0.9 45.8± 1.8 69.4± 0.4 58.8± 0.6 53.2 46.7± 0.5 56.5± 1.1 75.6± 0.4 65.1± 0.7 61.0
Multi-Obj. 25.6± 1.5 31.7± 1.7 58.7± 1.3 51.5± 0.9 41.8 34.6± 0.9 43.3± 1.4 66.1± 1.5 56.8± 0.7 50.2 46.2± 0.8 56.6± 0.5 74.3± 0.7 62.8± 0.6 59.8
AMTNN 32.5± 1.3 34.5± 0.9 56.3± 0.8 49.9± 1.8 43.3 41.1± 1.0 47.5± 0.8 68.4± 0.7 58.9± 0.9 53.9 48.9± 0.5 60.7± 0.4 75.4± 0.4 64.7± 0.4 62.1
SMTL 38.3± 0.9 40.9± 0.9 62.3± 0.8 55.5± 0.6 49.2 43.8± 0.6 50.4± 0.8 71.3± 0.9 62.3± 0.6 57.1 51.2± 0.7 60.6± 0.8 77.9± 0.4 66.1± 0.6 64.3

Ours 39.4± 0.3 43.4± 0.8 62.1± 0.8 55.5± 0.8 50.1 47.6± 0.7 54.5± 0.8 70.2± 0.3 64.7± 0.8 59.2 53.9± 0.4 63.1± 0.6 77.2± 0.5 67.9± 0.6 65.6
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Fig. 3. Comparison of the Impacts of the task index for the performance of different MTL algorithms on Office-31 and Office-Home datasets with different data
ratios.
-

investigate the performance for all the baselines aforementioned
under the setting that the task indexes are not available. To check
the performance of the MTL algorithms under the task-index-
agnostic scenario and also for a more fair comparison of our
method against the baselines, we further evaluate the baselines
with the agnostic task index.

To this end, we assign a random task index to each input
nstance, and the baseline algorithms will use the randomly as-
igned task index to train the model. We report the test results in
ig. 3, where the testing results are compared under random task
ndex, and with task index to denote the baselines were trained
nder the task-index-agnostic setting and task-index-accessible
etting.
As we can observe from Fig. 3, when the task index was

andomly assigned to the input instances, the baseline method
niform and Weighted can have minor improvement with limited

data (see Fig. 3(a) and Fig. 3(d)). This might be due to the ran-
domly assigned task index can lead to mixed input data, which
can improve the generalization property of these two algorithms
when they only have very limited data. For example, for the
baseline Uniform, when the input data are randomly mixed, the
ethod will be reduced to the Empirical Risk Minimization (ERM)
ethod with the mixed input. Recent work (Gulrajani & Lopez-
az, 2021) has shown that ERM can have good performance when
ealing with multi-source data. This coincides with our results.
hen we have more data (e.g. 10% or 20%), we can observe that

the performance of the recent strong baselines Adv.H, Adv.W,
MTNN and SMTL will decrease when the task index is not avail-
ble (the random task index setting in Fig. 3). This confirms the
ffectiveness of our method when handling task-agnostic data.
hus, our method provides a practical solution for real-world
cenarios.

.6. Further analysis

Apart from the general experimental results on the benchmark
atasets, we then further conduct several experiments to study
he insights of our algorithm.
9

5.6.1. Impacts on different feature extractor backbones
The backbone for the feature extractor through Table 1 to

Table 4 are selected by following some general selection by the
transfer learning literature (e.g. Long, Cao, Wang, & Philip, 2017;
Zhou, Chaib-draa & Wang, 2021; Zhou, Shui et al., 2021). In fact,
different feature extractor backbones can influence the model’s
performance since different general backbones can influence the
feature extraction. However, when conditioning on the same
backbone (e.g., ResNet-18 or AlexNet etc.) for both the baselines
and proposed method, the performances of the algorithms are
fairly comparable.

In this section, we further evaluate the impacts of the choice
of different feature extractors. Apart from the ResNet-18 model-
based evaluation, we conduct experiments on Office-31 and Office
Home with the AlexNet model to evaluate the impacts of feature
extractor backbones w.r.t. the performance of all the algorithms.
The results are presented in Table 5 and Table 6, respectively. We
can observe that with very limited data (e.g., 5% of training data),
the adversarial training-based approaches suffered from worse
performances. Compared with the baselines, our method can still
outperform the baselines.

5.6.2. Feature visualization
We illustrate the t-SNE visualization of the proposed method

on the Office-Caltech dataset with full data but trained with 20%
of the total instances. The results are reported in Fig. 4. Compared
to the pre-trained AlexNet model, our method can have a good
feature alignment performance, regardless of tasks. Considering
that the input data are task-agnostic, the well-aligned features
showed that our method could have a good performance in ex-
tracting the task-agnostic features and have a cohesion boundary
in the feature space.

5.6.3. Impacts of the temperature parameter
We then conduct the experiments to examine the impacts of

the temperature parameter τ of the contrastive learning objective
on the performance. We vary τ from 0.1 to 0.9 with 0.1 interval
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Table 5
Empirical Evaluations on Office-31 dataset with AlexNet backbone.

5% 10% 20%

Approach Amazon Dslr Webcam Avg. Amazon Dslr Webcam Avg. Amazon Dslr Webcam Avg.

MTL-Uniform 51.2± 2.6 52.8± 2.1 60.6± 1.9 54.9 61.6± 2.1 66.5± 1.2 71.5± 1.3 66.5 72.2± 0.9 82.4± 1.2 84.8± 1.8 79.8
MTL-Weighted 52.2± 1.4 71.2± 3.8 73.3± 3.1 65.6 63.0± 2.5 82.5± 0.9 81.7± 2.2 75.7 72.1± 1.2 93.4± 1.3 92.6± 0.9 86.0
Adv.W 49.8± 2.1 53.7± 2.4 60.5± 1.5 54.6 61.6± 1.1 65.3± 2.0 73.7± 1.4 66.9 72.5± 0.6 82.2± 1.3 87.2± 0.5 80.6
Adv.\mathcal{H} 52.0± 1.3 68.7± 1.1 70.6± 1.4 63.8 62.2± 1.3 65.9± 1.1 72.9± 1.2 67.0 71.4± 0.9 83.7± 1.3 88.9± 0.9 81.3
Multi-Obj. 51.1± 0.2 51.3± 1.2 62.0± 1.3 54.8 61.0± 0.9 65.5± 1.2 72.2± 1.6 66.3 72.0± 0.5 81.6± 0.7 87.6± 1.7 80.4
AMTNN 27.9± 1.1 60.8± 2.1 69.5± 1.8 52.7 52.3± 1.2 73.4± 3.3 80.0± 1.8 68.6 70.6± 1.1 86.4± 0.9 86.1± 1.3 81.0
SMTL 57.6± 2.3 76.2± 2.1 78.7± 2.1 70.8 66.8± 0.5 83.5± 0.2 87.6± 2.1 79.3 75.9± 1.1 92.1± 1.6 94.6± 0.4 87.6

Ours 57.2± 1.1 76.6± 0.2 79.1± 1.4 70.9 67.5± 0.7 89.4± 1.2 87.9± 0.6 81.6 76.5± 0.5 95.4± 0.6 93.4± 0.7 88.4
Table 6
Empirical Evaluations on Office-Home dataset with AlexNet backbone.

5% 10% 20%

Approach Art Clipart Product Real_World Avg. Art Clipart Product Real_World Avg. Art Clipart Product Real_World Avg.

MTL-Uniform 24.2± 0.9 29.4± 0.8 47.7± 1.3 40.0± 0.5 35.3 31.9± 1.2 39.6± 1.5 58.1± 1.0 49.0± 1.1 44.6 37.4± 0.7 49.0± 0.7 65.3± 0.5 53.8± 0.9 51.4
MTL-Weighted 21.6± 2.1 27.5± 1.3 45.7± 1.2 36.2± 2.8 32.8 28.9± 2.8 37.3± 1.7 55.9± 1.4 45.5± 3.3 41.9 36.6± 1.2 46.3± 1.5 67.0± 0.4 53.1± 1.1 50.8
AdvW 20.1± 0.8 27.7± 0.7 46.3± 1.3 35.3± 1.3 32.4 25.6± 0.8 37.8± 0.8 57.4± 0.4 44.5± 1.9 41.3 30.3± 1.4 43.9± 0.9 63.6± 1.2 46.6± 1.4 46.1
AdvH 19.8± 1.8 27.4± 0.6 45.8± 1.3 35.1± 0.8 32.3 27.8± 1.9 37.2± 0.6 56.6± 1.3 43.9± 0.8 41.4 30.5± 1.6 43.3± 1.1 63.2± 1.0 46.7± 1.3 45.9
Multi-Obj 17.6± 1.2 24.1± 0.8 41.8± 1.1 31.0± 0.9 28.6 27.9± 1.9 34.5± 0.8 51.9± 1.5 45.8± 0.9 40.1 29.2± 0.7 43.8± 0.7 62.0± 1.1 45.5± 0.9 45.1
AMTNN 17.6± 0.9 25.3± 1.0 46.6± 0.7 34.1± 1.6 30.9 24.4± 2.1 29.7± 0.8 55.5± 0.9 41.2± 1.8 37.7 31.3± 2.2 30.0± 3.4 63.5± 1.6 50.3± 1.8 43.8
SMTL 18.3± 0.9 26.9± 1.0 45.7± 0.8 38.3± 1.2 32.3 26.2± 1.5 38.6± 0.8 54.6± 0.8 48.9± 1.1 42.1 33.8± 1.1 48.2± 0.2 65.9± 0.3 53.2± 0.2 50.3

Ours 24.2± 0.6 30.1± 0.2 49.8± 0.4 40.1± 0.6 36.1 30.3± 0.4 40.5± 0.7 59.8± 0.9 49.4± 1.0 45.0 36.8± 0.5 50.5± 0.3 69.1± 0.6 54.1± 0.3 52.6
m

Fig. 4. t-SNE visualization of the alignment performance.

Fig. 5. Impacts on temperature coefficient τ to the performance.

with 20% total data of Office-31 and Office-Home datasets. The
results are reported in Fig. 5(a) and Fig. 5(b), respectively. As
we can observe from the evaluation results, the performance on
these two benchmarks slightly decreased when the value of τ
increased.

5.7. Discussion of test results

In the aforementioned empirical evaluations, we first com-
pared with several common state-of-the-art baseline MTL algo-
rithms, which requested the task index for training. Then, we
also compared our results with the random-task-index setting
and further analysis. The empirical results on four benchmarks
showed the proposed algorithm outperforms some strong base-
lines and achieves state-of-the-art performances. Besides, the
empirical results showed that although our method did not take
the task index information, it could still outperform the methods
10
trained with task index, which is more suitable to a practical
scenario where no task indexes are available.

6. Conclusion

Learning transferable knowledge from different task distribu-
tions is crucial for machine learning algorithms. In this work,
we tackle multi-task learning problems with limited data. Specif-
ically, we consider the learning scenario where the data from
different tasks are mixed, and the task indexes are agnostic to
the learner, which is a neglected issue in recent works. The
Episodic Contrastive Multitask Learning was designed to lever-
age the shared knowledge from different but agnostic tasks and
also enhance the feature compactness for prediction. In order
to learn the task-agnostic data, we compromise the episodic
training scheme of model-agnostic meta-learning to extract the
shareable features across tasks. To overcome the indiscriminative
features learned by the episodic training scheme, in addition
to the episodic training process, we further incorporate a su-
pervised contrastive learning objective to improve the feature
compactness for better class-specific cohesion and separation of
features across different tasks. The empirical results demonstrate
the effectiveness of the proposed method for a more practical
scenario where the input data are task-agnostic. Besides, the
feature alignment evaluations also confirmed the effectiveness of
this method in aligning features across tasks.
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