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a b s t r a c t

In this work, we tackle the domain generalization (DG) problem aiming to learn a universal predictor
on several source domains and deploy it on an unseen target domain. Many existing DG approaches
were mainly motivated by domain adaptation techniques to align the marginal feature distribution
but ignored conditional relations and labeling information in the source domains, which are critical
to ensure successful knowledge transfer. Although some recent advances started to take advantage
of conditional semantic distributions, theoretical justifications were still missing. To this end, we
investigate the theoretical guarantee for a successful generalization process by focusing on how
to control the target domain error. Our results reveal that to control the target risk, one should
jointly control the source errors that are weighted according to label information and align the
semantic conditional distributions between different source domains. The theoretical analysis then
leads to an efficient algorithm to control the label distributions as well as match the semantic
conditional distributions. To verify the effectiveness of our method, we evaluate it against recent
baseline algorithms on several benchmarks. We also conducted experiments to verify the performance
under label distribution shift to demonstrate the necessity of leveraging the labeling and semantic
information. Empirical results show that the proposed method outperforms most of the baseline
methods and shows state-of-the-art performances.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Recent machine learning and deep learning progress usually
epend on a large amount of labeled data, which is expensive to
nnotate. To alleviate this issue, many transfer learning (Maurer
t al., 2013; Wang et al., 2023) related approaches, e.g., multi-
ask learning (MTL) (Zhou, Chaib-draa, & Wang, 2021; Zhou et al.,
023; Zhou, Shui, et al., 2021), domain adaptation (DA) (Ben-
avid et al., 2010; Guan et al., 2021; Wen et al., 2019) and domain
eneralization (DG) (Zhou, Liu, et al., 2021), have been proposed
o take advantage of shared knowledge from different but related
ata sources. The key idea behind these transfer learning-related
ethods is to discover transferable feature representations that
eneralize well to new domains.
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Foundation of China (No. U22A202101), Natural Sciences and Engineering
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Most existing DA and MTL approaches have been devoted to
adopting discrepancy metric minimization (Li et al., 2017), statis-
tic distance minimization (Long et al., 2015, 2017) or adversarial
training (Ganin et al., 2016) methods to learn the transferable
features (Li et al., 2020; Mao et al., 2020; Shui et al., 2019), which
only control the marginal feature distributions. In addition, in
the context of DA, the target data are usually partially available
during training. However, we cannot always expect such a setting
holds in practice. For example, considering an autonomous driv-
ing system, the training and deploying environments could differ
from each other, and the model would not be able to expect to
access the deploying (target) data during training. To this end,
we tackle the DG problem, which aims to extract the knowledge
from source domains that generalizes well to an unseen target
(test) domain. We illustrate a general workflow of DG in Fig. 1.

Due to the similar problem setting with DA, many DA method-
ologies, especially the adversarial training (Ganin et al., 2016)
based approaches (e.g. Li et al., 2017), were borrowed for DG.
However, these approaches only align the feature distribution
P(x) and rely on the theoretical results under the assumption
that the combined error between the source and target domain
nd semantic information in domain generalization. Neural Networks (2023),
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Fig. 1. General workflow domain generalization: The model is trained on several
ource domains (D1,D2, . . .Dm) while deployed on an unseen target domain.
uring the training phase, the source data are mixed as input and fed into the
odel, during which both the source feature P(x) and label P(y) are available

to the learner. During the deployment phase, the model is frozen and tested on
the target domain Dt , which is inaccessible to the model during the training
phase.

is small (Ben-David et al., 2010), which could not hold in prac-
tice. Zhao et al. (2019) and Zhou et al. (2021e) showed that
conditional shift problems can degrade the prediction perfor-
mance. Besides, if we only align the feature distribution P(x)
hile ignoring the conditional semantic P(x|y) and labeling P(y)
istribution, the class information for each category among dif-
erent domains can be ignored, which leads to indiscriminative
eatures, a.k.a. semantic misalignment problem (Dou et al., 2019;
hou, Jiang, et al., 2021). As a consequence, the model may suf-
er from ambiguous classification boundaries (Zhou, Jiang, et al.,
021), which hinders the generalization performance.
To address this issue, some recent studies (e.g. Dou et al., 2019;

hou, Jiang, et al., 2021) have leveraged the label information
o explore the semantic relation for DG. However, the theoret-
cal justifications for the benefits of semantic alignment remain
lusive. Existing theoretical results (e.g. Li, Tian, et al., 2018;
hao et al., 2020) only focused on minimizing the conditional
istribution divergences from an optimization perspective, while
he analysis for the generalization properties is still missing.

In this work, we aim to develop theoretical insights into how
o ensure a successful generalization process by investigating
he test error on the target domain. We start by measuring the
arget domain error with the nearest source domain. Then, we
xtend the analysis with the semantic and labeling distributions
o provide a practical solution for minimizing the target domain
rror.
Our results reveal the necessity of controlling the semantic

onditional distributions as well as the label distribution diver-
ence across all the source domains. The contributions of our
ork are three-fold:

1. We build a theoretical analysis framework to understand the
domain generalization process upon bounding the test error
on the target domain with total variation distance, which
provides a deeper understanding of the role of semantic
alignment for general DG problems.

2. Our analysis also reveals the importance of controlling the
label distribution and semantic conditional distribution di-
vergence for each domain to minimize the generalization
error.

3. On the algorithmic side, our theoretical results inspire a
novel DG algorithm that jointly minimizes the source errors
as well as semantic distribution matching for all the source

domains. i

2

recisely, we propose to simultaneously match the semantic dis-
ributions by minimizing the centroid statistics across distribu-
ions and controlling the label distribution divergences. We con-
ucted extensive experiments and the results show that the pro-
osed algorithm outperforms various strong baselines, especially
hen label shift occurs.

. Related works

Our work is closely connected to the transfer learning prob-
ems including domain adaptation and domain generalization,
nd the conditional matching methodologies in recent transfer
earning literature.

.1. Domain adaptation

Domain Adaptation (DA) has been an active research area in
ecent years. We refer the reader to some existing literature
urveys (Redko et al., 2020; Wang & Deng, 2018) to have a com-
rehensive summary of the recent progress. Specifically, the label
hift problem tackled in this work has some connections with
he heterogeneous domain adaptation (Liu et al., 2020a) and open
et domain adaptation (Fang et al., 2020) problems. In this con-
ext, (Liu et al., 2020a) theoretically analyzed the guarantees of
he correctness of transferring knowledge together with an angle-
ased metric to measure the distance between the source and
arget domains under a heterogeneous DA setting. Latterly (Liu
t al., 2020b) investigated the multi-source heterogeneous DA
roblems with a shared-fuzzy-equivalence-relation neural net-
ork model. In the case of the open set learning scenario, it
ill be more challenging to match the features. In this context,
ome practical approaches have been devoted to the open set
earning problems (Liu et al., 2019; Shu et al., 2021), and theo-
etical justifications (Fang, Lu, Liu, Liu, & Zhang, 2021; Fang, Lu,
iu, Xuan, & Zhang, 2021) for the open set domain adaptation
roblems. More recently, Huang et al. (2022) proposed a multi-
epresentations adversarial learning (DMAL) method to tackle
oth the transferability and discriminability in domain adaptation
roblem through exploring the domain-invariant/-specific and
lass-invariant/-specific feature matching. Li, Du, et al. (2022)
roposed a novel theoretically rooted adversarial attack approach
hat did not depend on the divergence between domains. This
pproach enlightens a new way to explore the practical scenario
hat either the source or target domain data is unknown. Li, Jing,
t al. (2022) proposed a novel adaptation method to execute
he neural network layers for different samples depends on the
daptation difficulty, which provides a solution to reduce the
omputational costs and is suitable to energy-sensitive scenarios.

.2. Domain generalization

Similar to DA problems, the underlying assumption of DG is
hat there exists an invariant feature distribution across all the
omains, which consequently generalizes well to an unseen do-
ain. From a methodological perspective, existing DG approaches
an be categorized into three groups: (1) Distribution matching-
ased approaches, (2) Episodic training-based approaches, and (3)
ata augmentation-based approaches.
The distribution matching methods were mainly motivated by

he theoretical results in the DA literature (Ben-David et al., 2010;
edko et al., 2017), where the domains were aligned via some
istribution matching, distribution distance minimization or ad-
ersarial training methods to discover the shared knowledge.
or example, maximum mean discrepancy (MMD) was adopted

n Li, Jialin Pan, et al. (2018) as a distribution regularizer together
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ith the adversarial autoencoder (AAE) to learn the invariant fea-
ures. Muandet et al. (2013) proposed the kernel-based Domain
Invariant Component Analysis (DICA) algorithm, where a kernel-
based optimization algorithm was adopted to learn a domain-
invariant transformation by minimizing the dissimilarities be-
tween domains. Ghifary et al. (2015) proposed to use adversarial
training techniques to extract domain-invariant features under
a multi-task learning style setting. Li, Tian, et al. (2018) pro-
posed a DG approach by leveraging deep neural networks for
domain-invariant representation learning.

Recently, some approaches addressed the DG problem in a
meta-learning manner via the episodic training paradigm. The
notions of meta-train and meta-test are used to simulate the
istribution shift during each training iteration on the source do-
ain datasets. Specifically, MetaReg (Balaji et al., 2018) explored

he regularization functions for DG within a learning-to-learn
ramework. Meta Agnostic Meta-Learning (MAML) (Finn et al.,
017) was adopted by Li, Yang, et al. (2018) to back-propagate
he gradient of the losses of the meta-test tasks (Dou et al., 2019)
or DG. (Du et al., 2020) proposed to model the shared clas-
ifier model parameters as a probabilistic meta-learning model.
Sharifi-Noghabi et al., 2020) also adopted meta-learning to sim-
late the domain shift and adopted an entropy-based loss to
ive pseudo-labels together with class-level centroids to ensure
emantic properties. (Gong et al., 2021) introduced an interesting
etting where the target domain was assumed as a compound
f several unknown domains that were treated as sub-target
omains. Then, a meta-learning algorithm was adopted to fuse
he sub-target domains together with the MAML algorithm for
andling the generalization process. We also notice that some
ecent works (Mancini, 2020; Xu et al., 2021; Zhou et al., 2020b)
tarted to implement some data augmentation methods to gener-
te new instances for training. This kind of work typically relies
ore on the new data rather than transferring the knowledge,
hich is somehow out of the problem scope of our work.
In terms of theoretical analysis, (Blanchard et al., 2011) firstly

roposed the notion of average risk for a binary classification
roblem. Albuquerque et al. (2019) derived the target domain
ound using H divergence by assuming the target domain is

within the convex hull of the source domains. However, they
both only focused on aligning the feature marginal distributions,
ignoring the semantic information in the source domains. More
recently, (Zhao et al., 2020) proposed the conditional matching al-
gorithm by minimizing the prediction entropy H

(
P(y|x)

)
across

all the source domains, but the theoretical analysis therein was
developed from an optimization perspective, without examining
the generalization performance in the target domain. In contrast,
our work provides the generalization bounds to understand the
DG process, which also motivates an efficient algorithm to control
the semantic conditional distributions, which then enables us to
design a novel semantic matching algorithm.

2.3. Conditional matching for DA and DG

Learning and leveraging the semantic conditional distribution
P(x|y) is an important aspect of machine learning, which has been
prevalent in different learning paradigms such as few-shot learn-
ing (Luo et al., 2017; Motiian et al., 2017), transfer learning (Long
et al., 2014), etc. In the context of DA, (Xie et al., 2018) theoret-
ically analyzed the semantic transfer method with pseudo labels
using H-divergence (Ben-David et al., 2010). (Zhang et al., 2019)
explored the class-specific prototype semantic feature learning
using a symmetric network. In the context of DG, semantic
misalignment problems could hinder the generalization perfor-
mance. Aiming to solve this issue, (Dou et al., 2019) adopted the
triplet loss as an auxiliary learning objective on top of the meta-

learning-based DG approach (Li, Yang, et al., 2018). Matsuura and

3

Harada (2020) proposed to adopt an unsupervised learning objec-
tive to explore the class-level similarities to enhance the semantic
separation. Zhou, Jiang, et al. (2021) adopted the Wasserstein ad-
versarial training (Shen et al., 2018) to achieve the domain-level
alignment while exploring the class-level similarities to force the
instances from the same class to be close to each other and
push the instances from different classes away from each other,
i.e., achieving the semantic separation with a metric learning
objective (Wang et al., 2019). Wang and Zhang (2020) proposed
a self-adaptive adversarial approach, which achieves conditional
distribution alignment across domains. More recently, (Meng
et al., 2022) proposed a propose an attention diversification
framework by leveraging the attention mechanism to achieve
the invariance of conditional distributions across domains for
the DG problems and showed outstanding performances. Even
though these works have shown the benefits of considering
the semantic conditional distributions, however, the theoretical
justifications are still missing. In this work, we provide the first
theoretical analysis on the benefits of controlling the semantic
conditional distributions and provide a concrete algorithm to
jointly minimize the label and semantic distribution divergence.

3. Notations and preliminaries

We start by introducing some preliminaries with notations
and definitions. Then we analyze the importance of leveraging
the label and semantic distribution in Section 3.3. After that, we
show the harm of label and semantic distribution shifts in domain
generalization.

3.1. Notations and definitions

Let (x, y) ∈ X × Y be a training example drawn from some
unknown distribution D, where x is the data point, and y is its
label. A hypothesis is a function h ∈ H that maps X to the set Y ′
sometimes different from Y , where H is a hypothesis class. For
a non-negative loss function ℓ : Y ′ × Y ↦→ R+, we denote by
ℓ(h(x), y) the loss of hypothesis h at (x, y). Let S = {(xj, yj)}Nj=1 be
a set of N training examples drawn independently from D. The
empirical loss of h on S and its generalization loss over D are
defined, respectively, by R̂(h) = 1

N

∑N
j=1 ℓ(h(xj), yj), and R(h) =

(x,y)∼Dℓ(h(x), y).
In the context of DG, we are given m source tasks {Si}mi=1,

here Si = {(x
(i)
j , y(i)j )}Ni

j=1 is drawn from a distribution Di. The
objective of a DG algorithm is to learn a feature representation
that extracts the knowledge that can be shared across all the
known source domains so that it can also generalize well to an
unseen target domain distribution Dt .

3.2. Distribution distance measure

To measure the marginal and conditional distributions, we
need a tool to measure the distribution distances, which is crucial
in recent domain adaptation or generalization methodologies.
In this paper, we adopt the Jensen–Shannon divergence in our
analysis, which has been extensively studied in recent literature
in transfer learning (Dou et al., 2019; Matsuura & Harada, 2020;
Zhao et al., 2019).

Definition 1 (Jensen–Shannon (J–S) Divergence (Lin, 1991)). Let
i(x, y) and Dj(x, y) be two distributions over X × Y , and let
=

1
2 (Di + Dj), then the J–S divergence between Di and Dj is

efined as

JS(Di ∥ Dj) =
1
[DKL(Di ∥M)+ DKL(Dj ∥M)] (1)
2
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Fig. 2. A example in semantic shift. The dashed lines indicate the matching
process. Let the feature marginal distribution as the color of the instance while
the label distribution as positive (+) or negative (−), i.e., X = {red, blue},
Y = {+,−}. For the source distribution S1 , PS1 (X = red|Y = +) = 1 while
for the source distribution S2 , PS2 (X = red|Y = +) = 0.

where DKL(Di ∥ Dj) is the Kullback–Leibler divergence. The square
root of Jensen–Shannon Divergence, i.e.,

√
DJS is also know as

Jensen–Shannon Distance (Fuglede & Topsoe, 2004).

In our analysis, we also consider the Total Variation Distance,
which is an upper bound of DJS, we provide the definition below.

Definition 2 (Total Variation Distance (Lin, 1991)). Let Di(x, y) and
Dj(x, y) be two distributions over X × Y , then the total variation
distance could be measured by

dTV (Di,Dj) =
1
2
|Di − Dj| (2)

The J–S divergence, J–S distance and TV distance are usually
studied together when bounding the distances between different
data distributions (Zhou, Chaib-draa, & Wang, 2021) since they
enjoy the bounding properties (Polyanskiy & Wu, 2019; Shui
et al., 2022) that can provide us with good theoretical analysis
tools.

3.3. The value of label and semantic information

In the context of DG, a learner can only access the data from
the source domains (seen), while no target data is available
during the training phase (unseen). As aforementioned, many
DA techniques have been introduced to DG problems due to
the similar setting. Early approaches (e.g. Carlucci et al., 2019;
Li, Jialin Pan, et al., 2018; Li, Yang, et al., 2018) usually only
focused on aligning the feature distribution P(x) while ignoring
the labeling P(y) and semantic P(x|y) distributions. Some previous
work (e.g. Dou et al., 2019; Zhou, Jiang, et al., 2021) pointed out
that only aligning the feature distribution via distribution match-
ing or adversarial training can lead to the semantic misalignment
problems (Zhou, Chaib-draa, & Wang, 2021; Zhou, Jiang, et al.,
2021). Though some recent methods (e.g. Dou et al., 2019; Mat-
suura & Harada, 2020; Zhou, Jiang, et al., 2021) start to consider
the semantic distribution matching, their theoretical justifications
remain elusive. Our work provides a complete framework to
understand DG’s generalization properties, enabling us to design
an efficient semantic conditional matching algorithm.

On the other hand, many of the concurrent DG approaches
assumed that the label distribution across all the domains is
the same. However, this assumption is not necessarily held in
practice. A long-neglected issue is the label shift problem, which
has been explored in the literature of multi-task learning and
domain adaptation (Azizzadenesheli et al., 2019; Geng et al.,
2020; Panareda Busto & Gall, 2017) but missing in domain gener-

alization. More formally, the label shift between two domains Di t

4

and Dj indicates DJS(Di(y),Dj(y)) ̸= 0 (Zhou, Chaib-draa, & Wang,
021).
We present an example to show the necessity of control-

ing semantic divergence in Fig. 2. Suppose we have two source
istributions S1(x, y) and S2(x, y), and hope to match to the
arget distribution T (x, y). The feature marginal distribution is
epresented by the color of the region while the label distribution
s indicated by positive (+) or negative (−), i.e., X = {red, blue},
= {+,−}. For the source distribution S1, PS1 (X = red|Y =
) = 1 while for the source distribution S2, PS2 (X = red|Y =
) = 0. In this case, if we only use the general adversarial training
r MMD based approaches to align the marginal distribution, it
ill be difficult to fix the semantic shift problem. We should also
onsider to match the semantic distributions for each domain.
nother practical example can be the multi-source generalization
roblems on the digits problems. Let MNIST, a grey-scaled digits
ataset, be Di, and let the SVHN dataset, which consists of colorful
mages of street numbers, be Dj. If we consider a specific class
= yk, we can easily see that Di(x|y) ̸= Dj(x|y) since the color

nd digits styles are obviously different from each other.
On the other hand, label shift problem may also hurt the

eneralization performance. For example, for a health diagnostic
earning task using DG (Liu et al., 2021), when collecting the data
rom different hospitals, the labels may vary from each other
cross different datasets. The ultimate goal of DG is to align
(x, y) = P(x|y)P(y) between domains, if P(y) changes, even we
an match P(x|y) properly for all the domains, the prediction
f the classifier can still diverge since the label distribution is
ot necessarily aligned during either the supervised classification
rocess or the semantic matching process.
All these examples indicate that we need to consider both

he label and semantic distribution alignments when designing
G algorithms. In the next section, we develop the theoretical
ustifications for controlling the conditional semantic and la-
el distributions. Moreover, our results also lead to an efficient
lgorithm for DG problems.

. Theoretical analysis and methodology

.1. Theoretical analysis

One fundamental assumption of DG is that all the domains are
ot far from each other in terms of distribution distances (Zhou,
iang, et al., 2021). More formally, among all the source do-
ains, let D⋆ be the nearest one to the target domain, i.e., ϵ⋆ ≜

TV (D⋆,Dt ) ≤ dTV (Di,Dt ),∀i. Then, it is reasonable to assume
hat ϵ⋆ is small for DG problems since if the distance between
he source and target is arbitrarily large, the learner will fail to
eneralize to the target domain. Note that as also analyzed in Shui
t al. (2022), the nearest domain D⋆ is not explicitly known yet
lways exists when we have a finite number of source domains.
ater we show that the empirical algorithm can be designed
ithout relying on the nearest domain D⋆. The assumption ϵ⋆ ≜

TV (D⋆,Dt ) ≤ dTV (Di,Dt ),∀i shares the similar assumption of
he common assumption of DG that source domains and target
omain come from the same meta-distribution. Then, we can also
ssume D⋆ and Dt satisfy a semantic conditional distance, i.e.,
TV

(
D⋆(x|y),Dt (x|y)

)
≤ κ⋆, where κ⋆ is a constant and is not

rbitrarily large.
We show a generalization process in Fig. 3 where we have

everal source domains, and the target domain is unseen but
ssumed not to be far away from the source domains. Then, we
an bound the learning risk on the target domain RDt (h) as shown
n Theorem 1. Throughout this paper, we delegate the proof of the

heoretical results in the Supplementary Materials.
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Fig. 3. The domain generalization process where there are several source
domains and a target domain. In case we have limited number of source
domains, there exists a source domain D⋆ that is the nearest to the target
omain. At the training phase, we implement the alignment process for all the
ource domains to learn the transferable features that could be generalized to
he target domain.

heorem 1. Suppose we have m source domains D1, . . .Dm,
nd D⋆ is the nearest source domain to the target Dt , and ϵ⋆ ≜

TV (D⋆,Dt ). Then the target domain risk is bounded by,

Dt (h) ≤
1
m

m∑
i=1

RDi (h)+ ϵ⋆

+
1
m

∑
i

dTV (D⋆(x, y),Di(x, y))
(3)

Remark. The first term in Eq. (3) is the averaged source error
which can be approximated by the empirical risk minimization.
The second term is unobservable but is assumed to be small. The
third term also can not be estimated directly since we do not
know which source domain is nearest to the target. However, it
can be minimized by pair-wised distribution matching between
all source domains.

Theorem 1 bounds the target generalization error in terms of
the joint distributions between source domains. To motivate a
more concrete DG algorithm that leverages the label (D(y)) and
emantic conditional (D(x|y)) information, we have the following
orollary.

orollary 1. Following the assumptions of Theorem 1, then the
arget domain risk could be bounded by,

Dt (h) ≤
1
m

m∑
i=1

RDi (h)+ ϵ⋆

+
1
m

∑
i

[ √
DJS(D⋆(y) ∥ Di(y))  

I

+
√
Ey∼D⋆(y)DJS(D⋆(x|y) ∥ Di(x|y))  

II

+
√
Ey∼Di(y)DJS(D⋆(x|y) ∥ Di(x|y))  

III

]
(4)

In order to minimize Eq. (4), except for minimizing the source
domain risks 1

m

∑m
i=1 RDi (h) we need to consider the last three

terms I: J–S distance between the label distribution D⋆(y) and
i(y), as well as II and III, which are the J–S distance between

the semantic distributions.
For I in Eq. (4), we could adopt a reweighted loss L̂α

Di
(will be

introduced in Eq. (8)) to balance the label distribution for each
pair of source domains so that DJS(Di(y) ∥ Dj(y)) = 0 for all the
domain pairs i, j. In this case, term II and III will be identical to
each other and we can bound the generalization risk on the target
domain as follows,
 d

5

Corollary 2. Following the assumptions of Theorem 1 and assume
the semantic distribution between the nearest source domain to the
target domain is a constant, i.e., dTV (D⋆(x|Y = k),Dt (x)|Y = k) ≤
κ⋆. Let L̂α

Di
(h) be the reweighted loss and the prediction loss function

is bounded by [0, 1], then the target domain risk could be bounded
by,

RDt (h) ≤
1
m

m∑
i=1

Ex∼Di L̂
α
Di
(h)  

Re-weighted source risks

+ κ⋆
Constant

+
1
K

K∑
k=1

[ 1
m

m∑
i=1

dTV (D⋆(x|Y = k),Di(x|Y = k))  
Achieved by pair-wise semantic matching

] (5)

Remark. The first term is the balanced source errors that can help
to handle the label distributions shift. The second term is a small
constant. The third term could be minimized by a pair-wised
semantic matching scheme, and we will elaborate this point in
the next section.

Now, we show that by aligning the semantic conditional
distributions D(x|y), we could also align the marginal distribu-
tions D(x). We notice that, for a pair of source domain distribu-
tions Di and Dj,

x|Di(x)− Dj(x)| = Ex

∑
y

|Di(y)Di(x|y)− Dj(y)Dj(x|y)|

= Ex

K∑
k=1

|Di(Y = k)Di(x|Y = k)− Dj(Y = k)Dj(x|Y = k)|

=
1
K
Ex|

∑
y

(Di(x|y)− Dj(x|y))|

≤
1
K

∑
y

Ex|Di(x|y)− Dj(x|y)|

=
2
K

∑
y

dTV(Di(x|y),Dj(x|y))

(6)

q. (6) shows that by minimizing the total variation distance
etween the two semantic conditional distributions Di(x|y) and
j(x|y), we could also take care of the marginal distribution of
hese two domains Di(x) and Dj(x). That is, when matching the
emantic conditional distributions, we could also align the marginal
eatures simultaneously.

Now, based on the analysis above, we could summarize that
o minimize the target risk, we need to follow the two principles:

• minimizing the weighted source risks (will be introduced in
Eq. (8)).
• matching the semantic divergences between each source

domains (will be introduced in Eq. (14)).

With these two principles, we could introduce our methodol-
gy in the next section.

.2. Methodology

.2.1. The overview of our model
The model architecture is presented in Fig. 4. It consists of two

arts: feature extractor and classifier. The feature extractor, pa-
ameterized by θf , is trained to extract both feature and semantic
nformation that is shared across the sources domains. Once the
omains are aligned properly, the classifier, parameterized by θc ,
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Fig. 4. The overall model architecture. The feature extractor is trained to find
ut the shared features, and the extracted features are also used for computing
he centroids of the semantic distributions to compute the semantic objective.
he classifier is trained using the source domain data and is committed to
erforming well on the unseen target domain. For all the domains, the model
arameters are shared with each other and trainable on all the source domains.

s trained to make universal predictions for all the domains. For
lassification, we adopt the cross-entropy loss.

= −

m∑
i=1

Ni∑
j=1

y(i)j log(P(θc(θf (x(i)j )))) (7)

As analyzed before, to minimize the risk of the prediction on
the target domain, we should both control the semantic con-
ditional distance and the label distribution divergence. In case
of the label distributions differ from each other, some minor
classes may be regarded as noise, and the minor classes will be
neglected (Zhou, Chaib-draa, & Wang, 2021). In order to alleviate
the impacts of the source domains’ label space shifts, we could
re-weigh the importance of each class to correct the loss based
the total instance number in that category (Lipton et al., 2018),

L̂α
Di
(h) =

∑
(xi,yi)∈D̂i

α(yi)ℓ(h(xi), yi) (8)

here α = [α1, . . . αk, . . . , αK ]
T is the weighting vector for all K

lasses in each domain. For a certain class k, suppose we have mk
instances in that category, we could compute the weight by,

αk =
∑ |1[y = yk]|

mk
(9)

Through Eq. (9), the cross-entropy loss could be reweighted
via the frequency of the number of instances from a specific
class, which could ensure the data from different classes among
all the domains could have the same probability to be sampled
during training. By this process, the learner will be guided to
pay attention to the classes with few instances, which could
help to handle the label distribution drift. Then, the classification
objective could be computed as,

Lα
C =

m∑
i=1

L̂α
Di
=

m∑
i=1

∑
(xi,yi)∈D̂i

α(yi)ℓ(h(xi), yi) (10)

Except for the reweighted loss, we also need to guide the learner
to leverage the semantic distributions D(x|y) across the domains.
To this end, we adopt the extracted features zi from domain i, to
condition the semantic distributions P(z|y).

To align the semantic distributions, i.e., minimizing DJS
(

Di(x|y) ∥ Dj(x|y)
)
for all domains pairs i, j, one could have sev-

eral solutions (e.g. conditional GAN training, moment matching,
etc.). We adopted an alternative yet popular approach: class-level
feature mean matching method that is prevalent in the general
machine learning literature (e.g. Chopra et al., 2005; Dou et al.,
2019; Xie et al., 2018; Zhou, Chaib-draa, & Wang, 2021).

The semantic minimization objective is computed across all

the source domains. We can take out the extracted features t

6

and compute the corresponding semantic centroids. For instances
from source domains Si = {(xj, yj)}

Ni
j=1 from all the categories

k ∈ {1 . . . K }, similarly with (Dou et al., 2019), we condition
he extracted features on each class k to measure the semantic
onditional distributions. Then, the empirical semantic centroid
s estimated by,

ˆ
k
ci =

1
|Dk

i |

∑
xi∈Dk

i

zki =
1
|Dk

i |

∑
xi∈Dk

i

θf (xj)

≈ EDi [θ
f (xi)|Y = k]

(11)

Through this process, we compute the feature centroids. We
hen follow the strategy of Xie et al. (2018), Zhou, Chaib-draa,
nd Wang (2021) to maintain a global matrix ZDi for each source
omain to maintain the semantic centroids,
k
Di
← γ ẑkci + (1− γ )ẑkci (12)

Eq. (12) defines a moving averaging method for the batch
raining of Z , where λ is a coefficient to control the moving
verage temperature. Then, we could maintain a matrix Z i =

Z1
Di

, . . . ,ZK
Di
]
T to trace the semantic relations between do-

ains, through which we could match the semantic distributions
ia minimize the Euclidean distance Φ(Zk

Di
,Zk

Dj
) between two

entroids in the embedding space, which is computed as,

(Zk
Di

,Zk
Dj
) = ∥Zk

Di
− Zk

Dj
∥
2 (13)

Here the function Φ(Zk
Di

,Zk
Dj
) is the approximation of the to-

al variation dTV (Zk
Di

,Zk
Dj
), which is the upper bound of DJS(Zk

Di
∥

k
Dj
). Then for each training epoch, the semantic loss LS is

pdated by,

Sem ← LSem +Φ(ZDi ,ZDj ) (14)

By minimizing the semantic objectives of all the domains, we
ould achieve semantic invariant features.
Now, with the components described above, we could sum-

arize the learning objective of our method as,

= Lα
C + λsLSem (15)

here Lα
C is the modified classification objective defined in

q. (10), LSem is the semantic learning objective defined in Eq. (14)
nd λs is a coefficient to regularize the semantic learning objec-
ive.

emark. The learning objective LSem can be viewed as an extra
egularization term on top of the classification objective, which
an ensure semantic invariance, leading to better generalization
erformances.

We show the whole learning process in Algorithm 1 and
he model architecture in Fig. 4. The algorithm mainly consists
f several parts: first, to measure the label distributions and
ompute the reweighted classification objective to enforce the
lass-level alignment, and second to enforce the domain-level
emantic alignment for all the domains. We then evaluate the
ffectiveness of our method in the next section.

. Experiments and results

We verify the effectiveness of the proposed approach on
everal common-used benchmarks, including the PACS, VLCS
nd Office-home dataset, comparing with several baselines using
ommon evaluation protocols. Furthermore, apart from these
forementioned benchmarks, we also evaluate the algorithm on

he recent DomainBed framework. We first evaluate the results
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Algorithm 1 The proposed SMDG algorithm

Require: Samples from different source domains {Di}
m
i=1

Ensure: Neural network parameters θf , θc

1: formini-batch of samples {(x(i)s , y(i)s )} from source domains do
2: Compute the classification loss Lα

C over all the domains
according to Eq. (10)

3: Mix the instances and compute the semantic matching
objective LSem via Eq. (14)

4: Update θ f , θ c by solving Eq. (15) with learning rate η:

θf ← θf − η
∂(Lα

C + λsLSem)

∂θf ,

θc ← θc − η
∂(Lα

C + λsLSem)
∂θc

5: end for
6: Return the optimal parameters θf ⋆ and θc⋆

compared with baselines showing the state-of-the-art perfor-
mance on benchmarks. To further understand the method, we
then do the ablation studies, evaluations under label distribu-
tions shift as well as time efficiency evaluations to confirm the
effectiveness of our method.

5.1. Baselines and implementation details

We test our algorithm on the benchmark datasets with the fol-
owing principled domain generalization approaches: (1) matching
ased approaches, (2) meta-learning-based approaches and (3)
onditional alignment approaches. Specially, we compared the
ollowing baselines on the benchmarks: Deep All: Train the model
n source domains only. We implement the pre-trained AlexNet
r ResNet-18 as the feature extractor and aggregate the clas-
ification loss of all source domains as the learning objective;
DANN (Li, Tian, et al., 2018): We adopt the conditional align-
ent method by Li, Tian, et al. (2018), which targets to ex-

ract the conditional-invariant feature via varying the class prior
o that the conditional distributions among domains could be
atched; MLDG (Li, Yang, et al., 2018): MLDG is a meta-learning
ased domain generalization method. It stimulates the domain
hift by splitting the source data into meta-train, and meta-
est sets to learn the invariant features for generalization; D-
AM (D’Innocente & Caputo, 2018): It is a method that aggregates
everal domain-specific modules, which allows the model to
erge general and specific information from all the domains to
eneralize to a new domain; MMD-AAE (Li, Jialin Pan, et al.,
018): is a Mean-Max Discrepancy (MMD) based approach to
ap the latent features to kernel space for the MMD minimiza-

ion. The model is combined with the Adversarial AutoEncoder
AAE) model with shallow layers, and later in this work, we
dopt their MMD mappings with a deep model while relaxing
he reconstruction objective. MixUp (Yan et al., 2020): It proposes
o leverage the feature level consistency to facilitate the inter-
omain regularization. JiGen (Carlucci et al., 2019): It leverages
he Jigsaw puzzle under an unsupervised task to achieve domain
nvariant features for generalization. MASF (Dou et al., 2019):
ASF is also a meta-learning-based approach that combines the
LDG with the Constrictive Loss and Triplet Loss to encour-
ge class-level alignment. MMLD (Matsuura & Harada, 2020):
MLD is an approach that mixes all the source features together
ith an unsupervised objective to extract domain-independent

eature space. DGER (Zhao et al., 2020): DGER is an approach
hat focuses on minimizing the prediction entropy. DDAIG (Zhou
t al., 2020a): DDAIG is a generation-based method that consists
7

Table 1
Empirical Results (accuracy %) on each target domain on PACS dataset.
(Some results of the proposed method in this table are under double
check).
Method Art Cartoon Sketch Photo Avg.

Deep All 63.30 63.13 54.07 87.70 67.05
CDANN 62.70 69.73 64.45 78.65 68.88
MLDG 66.23 66.88 58.96 88.00 70.01
D-SAM 63.87 70.70 64.66 85.55 71.20
JiGen 67.63 71.71 65.18 89.00 73.38
MMLD 69.27 72.83 66.44 88.98 74.38
VREx 67.04 67.97 89.74 59.81 71.14

Ours 67.87 72.14 70.16 90.45 75.16

Table 2
Empirical Results (accuracy %) on VLCS dataset with pre-trained AlexNet
as Feature Extractor.
Method Caltech LabelMe Pascal Sun Avg.

Deep All 92.86 63.10 68.67 64.11 72.19
D-MATE 89.05 60.13 63.90 61.33 68.60
CDANN 88.83 63.06 64.38 62.10 69.59
TF 93.63 63.49 69.99 61.32 72.11
MMD-AAE 94.40 62.60 67.70 64.40 72.28
D-SAM 91.75 56.95 58.95 60.84 67.03
MLDG 94.4 61.3 67.7 65.9 73.30
JiGen 96.93 60.90 70.62 64.30 73.19
MMLD 96.66 58.77 71.96 68.13 73.88
S-MLDG 96.40 64.80 64.00 68.70 73.50
VREx 96.72 60.40 63.68 70.49 73.30

Ours 97.54 63.41 69.36 65.63 73.98

of a domain transformation module to the unseen domain. Do-
ainBed (Gulrajani & Lopez-Paz, 2021): DomainBed is a unified

ramework that compromises several recent baselines with stan-
ard evaluation benchmarks; We adopt the baselines provided
herein. WADG (Zhou, Jiang, et al., 2021): is a method that
ombines the Wasserstein adversarial training with a metric
imilarity learning objective to achieve both the domain-level and
lass-level alignment.
Following the evaluation protocol of Dou et al. (2019), Mat-

uura and Harada (2020), Zhou, Jiang, et al. (2021), we first adopt
he pre-trained AlexNet model as the feature extractor to evaluate
he algorithms on the PACS and VLCS datasets. For the PACS and
LCS datasets on AlexNet, we train the model with mini-batch
ize 64 and test batch-size 16. The model is trained with Adam
ptimizer with a learning rate of 2 × 10−4 for a total of 180

epochs. For the AlexNet backbone, we extract the intermediate
layer feature with size 256 to match the semantic features.

The results on PACS and VLCS benchmarks with AlexNet are
represented in Table 1 and Table 2, respectively. We refer to
the results of the baseline using the original value reported
in their manuscripts. From the results, we could see that our
method could outperform the baselines on these two benchmarks
by achieving state-of-the-art performance. We then follow the
evaluation protocols of Dou et al. (2019), Matsuura and Harada
(2020), Zhou, Jiang, et al. (2021) to implement the experiments on
the PACS dataset and Office-home with deeper backbones as the
feature extractor to show the benefits of our method. We adopted
the pre-trained ResNet-18 model as the feature extractor and
trained the model with mini-batch size 64 and test batch size 16.
The model is optimized with Adam optimizer with a learning rate
of 2×10−4 to 5×10−5 on PACS and VLCS datasets while 3×10−3
on the Office-home dataset. For the ResNet backbone, we extract
the intermediate layer feature with size 256 for computing the
semantic matching objective. The test results on PACS and Office-
Home benchmarks with ResNet-18 feature extractor are reported
in Table 4 and Table 3, respectively. For the experimental results
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Table 3
Empirical Results on Office-home dataset with pre-trained ResNet-18
as feature extractor.

Art Clipart Product Real-World Avg.

Deep All 52.15 45.86 70.86 73.15 60.51
D-SAM 58.03 44.37 69.22 71.45 60.77
JiGen 53.04 47.51 71.47 72.79 61.20
JAN-COMBO 48.09 45.20 66.52 68.35 57.04
SagNets 60.20 45.38 70.42 73.38 62.34
WADG 55.34 44.82 72.03 73.55 61.44

Ours 58.76 45.49 72.46 75.21 62.98

Table 4
Empirical Results (accuracy %) on PACS dataset with pre-trained
ResNet-18 as feature extractor.
Method Art Cartoon Sketch Photo Avg.

Deep All 77.87 75.89 69.27 95.19 79.55
D-SAM 77.33 72.43 77.83 95.30 80.72
JiGen 79.42 75.25 71.35 96.03 80.51
MASF 80.29 77.17 71.69 94.99 81.04
MMLD 81.28 77.16 72.29 96.09 81.83
S-MLDG 80.50 77.80 72.80 94.80 81.50
DGER 80.70 76.40 71.77 96.65 81.38
DDAIG 84.20 78.10 74.70 95.30 83.10
SagNets 83.58 77.66 76.30 95.47 83.25
WADG 81.56 78.02 78.42 95.82 83.45

Ours 81.10 79.66 78.92 95.87 83.89

Table 5
Empirical Results on PACS Dataset with pre-trained ResNet 50 as the
feature extractor.
Method Art Cartoon Photo Sketch Avg.

ERM 84.7 80.8 97.2 79.3 85.5
IRM 84.8 76.4 96.7 76.1 83.5
GroupDRO 83.5 79.1 96.7 78.3 84.4
MMD 86.1 79.4 96.6 76.5 84.6
DANN 86.4 77.4 97.3 73.5 83.6
CDANN 84.6 75.5 96.8 73.5 82.6
MTL 87.5 77.1 96.4 77.3 84.6
ARM 86.8 76.8 97.4 79.3 85.1
RSC 85.4 79.7 97.6 78.2 85.2

Ours 85.4 81.2 96.3 79.3 85.6

reflected in Table 1∼ Table 4, we empirically set λ = 0.1 and
γ = 0.3.

Except for the traditional evaluation protocol mentioned
above, we then evaluate our algorithm on a more recent challeng-
ing framework, namely DomainBed (Gulrajani & Lopez-Paz, 2021)
with the train-domain validation model selection criteria sug-
gested in Gulrajani and Lopez-Paz (2021), to verify the empirical
performances. Following the setting of DomainBed, we opt for the
pre-trained ResNet-50 model as the feature extractor and conduct
the experiments on PACS, VLCS and OfficeHome. The results are
displayed in Table 5, Table 6 and Table 7, respectively. We set the
learning rate as 5× 10−5 with the Adam optimizer. More details
about the experiments are delegated to the Appendix files. As it
can be observed from the results, our method can outperform
most baselines in the three benchmarks. We noticed that our
method did not generate better results than DANN and IRM on
VLCS. This might be due to the samples from the VLCS dataset
can vary widely in number and distribution. We can observe
that our method obtains competitive results, indicating stable
feature-matching performances.

Furthermore, compared with the methods based on the metric
learning objectives (e.g. Zhou, Jiang, et al., 2021), our method
does not require a large batch size for the triplet property to
achieve better performances. For example, on the Office-Home
benchmark, to ensure the triplet property, one needs a batch size
 c

8

Table 6
Empirical Results on VLSC Dataset with pre-trained ResNet 50 as the
feature extractor.
Method Caltech LabelMe Pascal Sun Avg.

ERM 97.7 64.3 73.4 74.6 77.5
IRM 98.6 64.9 73.4 77.3 78.5
GroupDRO 97.3 63.4 69.5 76.7 76.7
MMD 97.7 64.0 72.8 75.3 77.5
DANN 99.0 65.1 73.1 77.2 78.6
CDANN 97.1 65.1 70.7 77.1 77.5
MTL 97.8 64.3 71.5 75.3 77.2
ARM 98.7 63.6 71.3 76.7 77.6
RSC 97.9 62.5 72.3 75.6 77.1

Ours 97.9 65.1 72.1 75.1 77.6

Table 7
Empirical Results on Office-Home Dataset with pre-trained ResNet 50
as the feature extractor.
Method Art Clipart Product Real-World Avg.

ERM 61.3 52.4 75.8 76.6 66.5
IRM 58.9 52.2 72.1 74.0 64.3
GroupDRO 60.4 52.7 75.0 76.0 66.0
MMD 60.4 53.3 74.3 77.4 66.3
DANN 59.9 53.0 73.6 76.9 65.9
CDANN 61.5 50.4 74.4 76.6 65.8
MTL 61.5 52.4 74.9 76.8 66.4
ARM 58.9 51.0 74.1 75.2 64.8
RSC 60.7 51.4 74.8 75.1 65.5

Ours 58.9 55.1 75.3 77.1 66.6

of at least 195. When we adopt some deeper backbones (e.g.,
esNet-50) as feature extractors, the computational cost will be
rohibitive. This also confirms the effectiveness of our method.

.2. Further analysis

Except for the general benchmark evaluations, we then further
nvestigate the proposed method in several aspects, including the
-SNE visualizations, ablation studies, performance under label
hift and time efficiencies.

-SNE visualization. We first show the t-SNE visualization of our
ethod to show the alignment performance on the PACS dataset,
omparing the source-only training only and the full method. The
esults on PACS is illustrated on Fig. 5. The results show that
ur method could well align the features, which confirms the
ffectiveness of our method on category alignment.

blation studies. To confirm the effectiveness of each component
f our proposed method, we did the ablation studies on each part
f our proposed work. We implement the following ablations: (1)
ls. only: only train the model on the source domains using the
lassification objectives without the re-weighting technique; (2)
o Sem. We omit the semantic alignment objective while keeping
he classification objective with the re-weighting technique; (3)
o Re-weighting: We omit the re-weighting technique in the
lassification objective while keeping the semantic matching and
riginal cross-entropy classification objective. To better evalu-
te the effectiveness of our method with depth understanding,
e implement the ablations on PACS dataset with AlexNet and
esNet-18 model as feature extractor, as well as the ablation
tudies on Office-Home dataset with ResNet-18 as the feature
xtractor. The results of ablation studies are presented in Ta-
le 8. As we could observe from the ablation results, semantic
omain alignment is crucial to our method. If we omit the se-
antic alignment objective, there could be a rapid drop-off in

he performance. Besides, the label correction objective could also
elp to improve the performance compared with the original
ross-entropy learning objective.
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Table 8
The ablation studies on PACS and Office-Home datasets.
Benchmark PACS-AlexNet PACS-ResNet18 Office-Home

Ablation A P C S Avg. A P C S Avg. Ar Cl Pr Rw Avg.

Deep-All 63.30 87.7 63.13 54.07 67.05 77.87 95.19 75.89 69.27 79.55 52.15 45.86 70.86 73.15 60.51
No-sem. 64.40 87.37 67.55 65.36 71.71 80.08 94.68 79.26 76.75 82.69 57.37 43.37 71.51 73.93 61.54
No re-weight 64.55 86.55 68.33 68.70 72.03 79.17 94.91 78.85 76.71 82.41 58.35 45.06 72.21 75.05 62.67
Full 67.87 90.45 72.14 70.16 75.16 81.10 79.66 78.92 95.87 83.89 72.46 58.76 45.49 75.21 62.98
Fig. 5. t-SNE visualizations of our method on PACS dataset.
Fig. 6. Performance comparison under label shift situation on PACS dataset with
respect to the four target domains.

Performance under label distribution shift. As our theoretical anal-
sis (Section 4.1) demonstrates the necessity of controlling the
abel shift and our algorithm is committed to handling label
istribution shift. To confirm the effectiveness of overcoming
abel shift problems, we conduct the experiments to check the
G algorithms’ performance under label shift scenarios where the
abel distributions from all the domains drift from each other,
.e., we randomly remove a certain percentage of instances from
ach domain. We implement the label drift process on PACS
nd Office-Home datasets. We compared our method with the
ollowing four principled methods: (1) The conditional alignment
ethod, namely the CDANN method (Li, Tian, et al., 2018), (2) The
eta learning-based method, namely the MLDG method (Li, Yang,
t al., 2018), (3) The Mean-Max Discrepancy (MMD) minimization
ased method (Li et al., 2017) and (4) The MixUp method (Yan
t al., 2020). For the PACS dataset, for each source domain, we
emove a certain ratio (10% ∼ 90%) of instances from 2 classes.
For the Office-Home dataset, for each source domain, we remove
9

Fig. 7. Performance comparison under label shift situation on Office-Home
dataset with respect to the four target domains for each generalization task.

a certain ratio (10% ∼ 90%) of instances randomly selected from
15 categories. The compared results curves on PACS and Office-
Home datasets with different target domains are illustrated in
Fig. 6 and Fig. 7, respectively.

From the results, we could observe that our method could
outperform the baselines under all the drift ratios. Specifically,
on the PACS dataset, we could observe that the MLDG method
and MixUp method could have a similar performance compared
with ours under certain shift ratios when choosing Art and Sketch
as the target domain. However, on the Office-Home dataset, our
method could have obvious improvements compared with all
the baselines, which confirmed the effectiveness of our method.
Since the number of classes of the PACS dataset (7) is obviously
smaller than the number of classes of Office-Home dataset (65),



NN: 5590

F. Zhou, Y. Chen, S. Yang et al. Neural Networks xxx (xxxx) xxx

a
r
–
&
e

D

c
t

D

A

R
S
a
S
c

A

o

R

A

A

B

B

B

C

Fig. 8. Relative time comparison on PACS and Office-Home dataset.

the simulated label shift does not have obvious changes to the
data distribution, which may lead to similar performances in the
shift on PACS dataset. Furthermore, the number of instances in
each domain of PACS dataset is relatively more than the number
of instances in each domain of the Office-Home dataset. Thus, the
baseline methods are more sensitive to label shifts on the Office-
Home benchmark than PACS benchmark. This also confirms the
effectiveness of our method when handling a minor number of
instances when the label shift problem occurs.

Time efficiency. We then evaluate the time efficiency of our
method, comparing it with the four principled baselines on both
the PACS and Office-Home benchmark to demonstrate the effec-
tiveness of our method. We demonstrate the time efficiency by
comparing the relative average time, setting our time as the unit
time for one training round. The results are presented as a relative
percentage bar chart by setting the time costs of our method as a
unit in Fig. 8. From the results, we could observe that our method
has similar time efficiency with MMD and MixUp methods while
having better time efficiency than CDANN and MLDG.

6. Conclusion

In this work, we considered the generalization property in
DG problems by exploring the value of the label and seman-
tic information across domains, which were neglected by the
previous work. We investigated the theoretical guarantee for a
successful generalization process by focusing on how to control
10
the target domain error. Our results revealed that to control the
target risk, we should jointly control the source errors that are
weighted according to label information and align the semantic
conditional distributions between different source domains. The
theoretical analysis then inspired an efficient algorithm to con-
trol the label distributions and match the semantic conditional
distributions. The empirical results showed that our method out-
performed most of the baselines, achieving state-of-the-art per-
formances on the benchmarks. Furthermore, the time efficiency
of the method showed that our method could achieve better
benchmark performances with better time efficiencies. Besides,
our method also showed better performances under the label
shift situations, which could not perfectly be handled by the
baselines.
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