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On the Benefits of Two Dimensional
Metric Learning

Di Wu*, Fan Zhou*, Boyu Wang, Qicheng Lao, Chi Man Wong, Changjian Shui, Yuan Zhou, and Feng Wan

Abstract—In this paper, we study two dimensional metric learning (2DML) for matrix data from both theoretical and algorithmic
perspectives. We first investigate the generalization bounds of 2DML based on the notion of Rademacher complexity, which
theoretically justifies the benefits of learning from matrices directly. Furthermore, we present a novel boosting-based algorithm that
scales well with the feature dimension. Finally, we introduce an efficient rank-one correction algorithm, which is tailored to our boosting
learning procedure to produce a low-rank solution to 2DML. As our algorithm works directly on the data in matrix representation, it
scales well with the feature dimension, keeps the structure and dependence in the data, and has a more compact structure and much
fewer parameters to optimize. Extensive evaluations on several benchmark data sets also empirically verify the effectiveness and
efficiency of our algorithm.

Index Terms—Two dimensional learning, metric learning, Rademacher complexity, boosting, low-rank matrices.
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1 INTRODUCTION

D ISTANCE metric learning plays an important role in
many machine learning algorithms since their perfor-

mances rely on distance metrics for an appropriate defini-
tion of similarity/dissimilarity over the input space (e.g.,
k-nearest neighbor (k-NN) classifier). Starting from [44],
distance metric learning has been actively studied as a
promising approach to learn a problem-specific distance
metric [11], [36], [41]. In the usual setting, the data is
provided as a collection of vectors {xi}Ni=1 ∈ Rd, and
the objective of metric learning is to learn a Mahalanobis
distance parameterized by a symmetric positive definite (SPD)
matrix M ∈ Sd+: dM (xi, xj) =

√
(xi − xj)>M(xi − xj),

where Sd+ denotes the cone of SPD matrices defined over
Rd×d, such that additional constraints (e.g., pairwise sim-
ilarity, structural constraints) are satisfied. However, there
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are many real world applications, such as image classifica-
tion [45], electroencephalogram (EEG) signal analysis [40],
auditory spectrogram analysis [25], [29], where the instances
are formed as matrices. When dealing with these problems,
classical metric learning algorithms have to vectorize the
matrices, which has three fundamental limitations:

1. The vectorized features are usually high dimen-
sional, which makes the learning algorithms infea-
sible due to the time and space complexity. For
example, vectorizing a d × d matrix results in a d2

vector, which requires O(d6) at each optimization
step [41].

2. The model complexity (i.e., the SPD matrix M ) is of
size O(d4), which indicates that the classical algo-
rithms have higher risk of overfitting.

3. Even though the high dimensionality problem can be
alleviated by some preprocessing step such as princi-
pal component analysis (PCA), the natural structure
of the data is lost due to vectorization. For example,
when analyzing multichannel EEG signals of size
m × n, where m is the number of channels, and n
is the number of time points, vectorizing the data
will cause the loss of either temporal or spatial in-
formation, which could be potentially useful for the
analysis.

Aiming to solve these problems, there have been ex-
tensive studies on two dimensional (sometimes also termed
as bilinear) learning algorithms in the literature, which can
deal with matrix data directly. This idea was first proposed
in [45], which was a two dimensional extension of classical
PCA. Later, it was adopted in discriminant analysis [8],
[10], [46], canonical correlation analysis [21], support vector
machines [16], [32], logistic regression [39], local tensor dis-
criminant analysis [27], and metric learning [38]. Recently,
bilinear learning has also studied in deep learning [47].
In practice, these techniques have been applied to feature
extraction and dimensionality reduction [28], [48], image
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classification [15], [46], EEG signal analysis [8], fMRI signal
analysis [1], and music genre classification [29].

While the empirical results presented in these works
have verified the effectiveness of the two dimensional learn-
ing approach, its theoretical justification, to the best of our
knowledge, is never investigated. As the main contribution,
we theoretically analyze the benefits of two dimensional met-
ric learning (2DML), showing that the Rademacher complex-
ity of 2DML has a faster convergence rate than traditional
metric learning algorithms when dealing with matrix data.
Then, we present an efficient 2DML algorithm to further
alleviate the computational issue of metric learning, which
leads to our second contribution. More specifically, the
proposed algorithm alternatingly learns two SPD matrices,
one for each dimension of the matrix data. To learn each
metric matrix, we adopt the idea that a SPD matrix can
be formulated as a linear positive combination of trace-
one rank-one (TORO) matrices [36], and can be solved
efficiently by using an AdaBoost-like procedure. In addition,
we also introduce an efficient rank-one correction algorithm
to learning a low-rank metric matrix, which is particularly
useful for reducing the model complexity.

We note that two-dimensional data may also be handled
by advanced deep learning techniques, such as convolu-
tional neural networks [13]. However, there are still many
small size problems in practice, which cannot be properly
addressed by deep nets. For deep metric learning, if the
number of instances of each class is too small, it will be chal-
lenging to form training batches to build a reliable model.
Therefore, the primary focus of this work is linear metric
learning, but our analysis can also be generalized to deep
metric learning [18] by leveraging the recent theoretical
results of deep nets in [12].

2 TWO DIMENSIONAL METRIC LEARNING

For a better presentation of our theory and algorithm, Ta-
ble 1 summarizes the notations used in this paper.

2.1 Problem Setup
In the one-dimensional metric learning setting, let S =
{zi = (xi, yi)}Ni=1 be a data set of size N drawn from
some distribution D, where xi ∈ Rd is a feature vector, and
yi ∈ {1, . . . , C} is its class label. Let H be a hypothesis class
of metric functions, then, the goal of metric learning is to
minimize the following objective function:

min
h∈H
LS(h),

where LS(h) = 1
N(N−1)

∑N
i6=j ` (h, zi, zj) is empirical loss,

` (·) is the loss function of h over the pairs of examples (e.g.,
hinge loss [41], [42]).1 In one-dimensional metric learning, h
can be parameterized by the Mahalanobis distance between
xi and xj :

h(xi, xj) = (xi − xj)>M(xi − xj) = ||L(xi − xj)||22, (1)

whereM = L>L ∈ Sd+ is a SPD matrix. Eq. (1) indicates that
learning M is equivalent to learning a linear transformation

1. For simplicity, our theoretical analysis focus on pair-based con-
straints, but the conclusion is also applicable to triplet-based metric
learning algorithms with slightly modification of the proof schema.

TABLE 1
Summary of Notations

Notation Description
X An m× n dimensional instance in a matrix form
y The label of an instance
z A pair of an instance and its label
S A data set of size N
D The data distribution where S is sampled from
N The number of instances
bN

2
c The largest integer less than or equal to N

2
C The set of constraints
Sd

+ The cone of d× d SPD matrices

1 The set of trace-one rank-one matrices
‘ A loss function
� A Lipschitz constant
H A hypothesis class of metric functions
h A metric function in the hypothesis class H : h ∈ H
G The hypothesis class of composition of h ∈ H and ‘
LS The empirical loss over the data set S
LD The expected loss over the distribution D
L;R Left and right projection matrices
U; V U = L>L; V = R>R: left and right metric matrices
�; � The upper bounds of the Frobenius norm of U and V
� The upper bound of the Frobenius norm of two instances
� The upper bound of the spectral norm of two instances
T Maximum number of iterations for TDBML (Algorithm 1)
K Maximum number of iterations for BML (Algorithm 2)
�U ; �V regularisation parameters for TDBML and BML
� The desired rank of U or V (Algorithm 3)
Q Current rank of U or V
i; j; l Instance indices
c Constraint index
t Iteration index for TDBML
k Iteration index for DBML
q TORO matrix index

parameterized by L ∈ Rd
0×d: x̂ = Lx, so that {(x̂i, yi)}Ni=1

satisfies the constraints in the transformed space.
In the setting of 2DML, we are given S = {(Xi, yi)}Ni=1,

where Xi ∈ Rm×n is an instance in a matrix form. For
example, in EEG signal analysis, the data can be represented
as multichannel time series, where m is the number of chan-
nels, and n is the number of sampling points. Accordingly,
we aim to learn a bilinear transformation parameterized
by L ∈ Rm

0×m and R ∈ Rn
0×n: h(Xi, Xj) = ||L(Xi −

Xj)R
>||2F, where || · ||F is the Frobenius norm of a matrix.

By the property of Frobenius norm, we note that

||L(Xi −Xj)R
>||2F =

〈
(Xi −Xj)

>U(Xi −Xj), V
〉

(2)

=
〈

(Xi −Xj)V (Xi −Xj)
>, U

〉
,

where U = L>L ∈ Rm×m and V = R>R ∈ Rn×n,
〈A,B〉 = Tr(A>B), and Tr(·) is the trace of a matrix. To
control the model complexity, we further require ||U ||F ≤ α,
and ||V ||F ≤ β. Consequently, the optimization problem of
2DML becomes

min
||U ||F≤α,||V ||F≤β

LS(U, V ). (3)

2.2 Theory
In this section, we analyze the generalization performance
of 2DML by exploiting the notion of Rademacher com-
plexity [2]. In particular, we show that the Rademacher
complexity of a two-dimensional metric algorithm is smaller
than that of one-dimensional approach, which justifies the
benefits of 2DML.
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In this paper, we assume that for any pair of instances
X,X ′, we have ||X −X ′||F ≤ η and ||X −X ′||2 ≤ µ, where
|| · ||F and || · ||2 are, respectively, the Frobenius norm and
the spectral norm of a matrix. In addition, we consider ρ-
Lipschitz continuous loss functions, as defined below.

Definition 1 (ρ-Lipschitz continuity). Let H be a hypothesis
class defined over pairs of examples. A loss function ` (h, z, z′) is
ρ-Lipschitz continuous with respect to H for some ρ ∈ R+ if, for
any two hypotheses h, h′ ∈ H and for any z, z′ ∼ D, we have:

|` (h, z, z′)− ` (h′, z, z′)| ≤ ρ |h(z, z′)− h′(z, z′)| .

The main obstacle to derive generalization bound for
metric learning is the fact that the training examples for
metric learning algorithms are formed by the pairs of the in-
stances, and therefore cannot be independent. Consequently,
if one instance is changed, some other pairs/triplets are also
changed. To address this issue, we introduce the notion of
Rademacher complexity defined over sums of independent
and identically distributed (i.i.d.) sample blocks.

Definition 2 (Empirical Rademacher complexity). Let G
be a hypothesis class defined over pairs of examples, and S =
{z1, . . . , zN} be a fixed sample of size N . Then, the empirical
Rademacher complexity of G with respect to the sample S is
defined as:

R̂S(G) = Eσ

sup
g∈G

1

bN2 c

bN
2 c∑
i=1

σig(zi, zbN
2 c+i

)

 ,
where σi, . . . , σbN

2 c
are independent uniform random variables

taking values in {−1,+1}, and bN2 c is the largest integer less
than or equal to N

2 .

Remark 1. Our definition of Rademacher complexity is related
to the Rademacher average for metric learning in [7]. It is worth
mentioning that the Rademacher average is only defined over
examples, whereas Definition 3 takes the hypothesis class G into
account, which allows us to capture and analyze the richness of G
for metric learning.

Definition 3 (Rademacher complexity). Let D be the dis-
tribution according to which samples are drawn. Then, the
Rademacher complexity is the expectation of the empirical
Rademacher complexity R̂S(G) over the sample S drawn accord-
ing to D:

R(G) = ES∼DN R̂S(G).

Given the definitions, the following theorem shows that
the generalization performance of metric learning depends
on R(G).2

Theorem 1. Let H be a hypothesis class of metric functions, `
be a ρ-Lipschitz continuous loss function bounded by B ≥ 0,
S = {z1, . . . , zN} be a fixed sample of size N drawn from
a distribution D, and LD(h) = Ez,z0∼D[`(h, z, z′)] be the
expected loss of h over D. Then, for any δ ∈ (0, 1), with
probability at least 1− δ, the followings hold for any h ∈ H:

LD(h) ≤ LS(h) + 2ρR(H) + 2B

√
log 1

δ

2N
, (4)

2. All proofs are delegated to the supplementary materials.

Theorem 1 shows that if the Rademacher complexity of
H is of order O( 1p

N
), as we will prove in Theorem 2, metric

learning will have a convergence rate of orderO( 1p
N

), which
is the same as traditional supervised learning. Moreover, the
generalization bounds above are model-agnostic – they are
applicable to both traditional metric learning and 2DML.

To derive meaningful generalization bounds and reveal
the benefits of 2DML, we upper bound the Rademacher
complexity of 2DML, which leads to the main theoretical
contribution of this work.

Theorem 2. Let S = {z1, . . . , zN} be a sample of size N , and
H be the hypothesis class parameterized by U ∈ Sm+ and V ∈ Sn+
as in (2), with ||U ||F ≤ α and ||V ||F ≤ β. Then, the Rademacher
complexity of H can be upper bounded by

RS(H) ≤ αβη2√
bN2 c

. (5)

and

RS(H) ≤ αβµ2

√
2 log(m2 + n2)

bN2 c
. (6)

If m = n, then, by the definition of the Frobenius and
spectral norms, we have µ ≤ η ≤

√
nµ. Consequently, the

ratio of the bounds in (5) and (6) is between O( 1
log n

) and
O( n

log n
). In other words, the bound in (6) could be much

tighter than in (5) especially for high dimensional data.
Additionally, the benefits of learning from matrices directly
are more apparent in (6) – when dealing with vectorized
data, the bound in (6) becomes ���2

q
2 log(m2n2 + 1)=bN

2
c,

which implies a slower convergence rate than 2DML.
The theoretical properties of metric learning have been

investigated in the literature. In particular, the general-
ization bounds have been studied by making use of the
notions of algorithmic stability [17], [30], Rademacher com-
plexity [7], [14], [22], good similarities [4], algorithmic ro-
bustness [3]. In fact, if we consider one-dimensional metric
learning by letting n = 1 and β = 1, we will recover the
Rademacher bounds for metric learning in [7], [22] as a
special case of our analysis. Compared to the Rademacher
bounds using U-statistics in [7], [14], [22], which are only
applicable to hinge loss or strongly convex function, our
results are more general and can be applied to any Lipschitz
continuous loss function. Most importantly, the Rademacher
average in [7], [14] is only defined over examples, while
the Rademacher complexity defined in our work is also
associated with a hypothesis space, which enables us to
analyze 2DML. To the best of our knowledge, none of
existing works has studied the benefits of 2DML from a
theoretical perspective.

2.3 Algorithm
In this section, we present an efficient and scalable al-
gorithm, termed two dimensional boosted metric learning
(TDBML) to solve (3). In particular, we consider the relative
constraint defined over triplets as in [37], [41]. In particular,
we define

XU
c = (Xi �Xl)

>U(Xi �Xl)� (Xi �Xj)>U(Xi �Xj); (7)
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Algorithm 1 TDBML
Input: Data set S, �U ; �V : regularization parameters, T : maxi-
mum number of iterations, K: maximum number of boosting
iterations for BML.

1: Initialize V (0); U (0)

2: for t = 1; : : : ; T do
3: Update XV

c given V (t�1) using Eq. (8).
4: Call U (t) = BML(XV

c ; �U ;K; U
(t�1)) to solve Eq. (11).

5: Update XU
c given U (t) using Eq. (7).

6: Call V (t) = BML(XU
c ; �V ;K; V

(t�1)) to solve Eq. (23).
7: if converge then break end if
8: end for

Output: Metric matrices U = U (t) and V = V (t).

and

XV
c = (Xi �Xl)V (Xi �Xl)

> � (Xi �Xj)V (Xi �Xj)>; (8)

where c = 1, . . . |C|, C is the set of constraints formed by the
labels of instances, and |C| is the number of the constraints
or any other side-information. For example, Xj can be an
instance having the same label as Xi, and Xl can be an
instance having a different label with Xi. According to (2),
the relative constraint we aim to optimize becomes

φc =

{
φUc , 〈XU

c , V 〉
φVc , 〈XV

c , U〉
. (9)

The objective of TDBML is to learn U and V such that the
margin φc is as large as possible. Inspired by [36], [37], we
impose the logarithm of the sum of the exponential (log-
sum-exp) loss to derive our boosting-based algorithm. To
this end, the objective function of TDBML can be formulated
as

min
U,V

log

( |C|∑
c=1

exp−φc
)

+
λU
2
||U ||2F +

λV
2
||V ||2F (10)

s.t. U, V ∈ Sd+,

where instead of explicitly controlling the Frobenius norm
of U and V , we have introduced additional regularization
terms, and λU and λV are the regularization parameters.

As the problem (10) is a bilinear optimization problem, it
is difficult to optimize U and V simultaneously. Instead, we
adopt the alternating optimization as in [38], [46], leading
to an iterative algorithm in the following. Note that if U
(V ) is fixed, solving (10) with respect to V (U ) is a convex
optimization problem, and can be solved by using the
similar procedure as in [37].

2.3.1 Computing U given V

Given V , the objective function of TDBML becomes

min
U

log

( |C|∑
c=1

exp−φVc
)

+
λU
2
||U ||2F (11)

s.t. U ∈ Sd+.

As a positive semidefinite matrix can be decomposed by a
positive linear combination of TORO matrices, we can refor-

Algorithm 2 BML(Xc, λ,K,M0)

Input: Triplet set fXcgjCjc=1, �: regularization parameter,
K: maximum number of iterations, M0: an initial matrix.

1: Initialize �c using Eq. (21), where �c = hXc;M0i.
2: for k = 1; : : : ;K do
3: Compute �k using Eq (18).
4: Select a new base learner Pk using Eq (19).
5: if �(�k) < 0 then break end if
6: Compute the coefficients wk by solving Eq (20).
7: Call ROC to learn a low-rank metric (optional).
8: Update the weight �c for each triplet Xc using (22).
9: end for

Output: Metric matrix M = M0 +
PK

k=1 wkPk.

mulate U as U =
∑K
k=1 wkPk, with wk ≥ 0, rank(Pk) = 1,

and Tr(Pk) = 1, ∀k = 1, . . . ,K . Then, we have

φVc =
K∑
k=1

wk
〈
XV
c , Pk

〉
= ξ>c w, (12)

where w = [w1; : : : ; wK ]>, �c = [hXV
c ; P1i; : : : ; hXV

c ; PKi]>.
Now the objective function (11) becomes

min
w,φ

log

( |C|∑
c=1

exp−φVc
)

+
λU
2

∣∣∣∣∣∣∣∣ K∑
k=1

wkPk

∣∣∣∣∣∣∣∣2
F

(13)

s.t. φVc = ξ>c w, Pk ∈ Ω1, w � 0,

where Ω1 is the set of TORO matrices. The Lagrange func-
tion of (13) is

L(w, φ, µ, ν) = log

( |C|∑
c=1

exp−φVc
)

+
λU
2

∣∣∣∣∣∣∣∣ K∑
k=1

wkPk

∣∣∣∣∣∣∣∣2
F

+

|C|∑
c=1

µc
(
φVc − ξc

>w
)
− ν>w, (14)

where µc ≥ 0, c = 1, . . . , |C|, ν � 0 are the sets of Lagrange
multipliers. Then, the dual function is given by

inf
w,φ

L = inf
φ

log

( |C|∑
c=1

exp−φVc
)

+

|C|∑
c=1

µcφ
V
c

 (15)

+ inf
w

λU
2

∣∣∣∣∣∣∣∣ K∑
k=1

wkPk

∣∣∣∣∣∣∣∣2
F

−
( |C|∑
c=1

µcξ
>
c + ν>

)
w

 .
It can be observed that the problem (15) can be minimized
with respect to φ and w separately, which gives the La-
grange dual problem of (11)

max
µ
−
|C|∑
c=1

µc logµc (16)

s.t.
|C|∑
c=1

µc = 1, µc ≥ 0,∀c = 1, . . . , |C| (C1)

|C|∑
c=1

µcξc,k ≤ λU
∑
i 6=k
〈wiPi, Pk〉, (C2)

where �c;k = hXV
c ; Pki is the k-th element of ξk. However,

as the number of possible TORO matrices is infinite, either
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the primal (11) or dual (16) can be solved. Following the
intuition of column generation [24], we use an AdaBoost-
like algorithm which sequentially adds TORO matrices to
the current solution. More specifically, at the k-th iteration,
a TORO matrix that most violates the constraints (C2) is
added to the optimization problem. In other words, we have
to solve

Pk = arg max
P

〈
1

λU

|C|∑
c=1

µcX
V
c −Hk−1, P

〉
, (17)

s.t. P ∈ Ω1,

where Hk =
∑k
i=1 wiPi is the solution of H at the k-th

boosting iteration. Note that as Pk is a TORO matrix, the so-
lution of (17) can be obtained by eigenvalue decomposition.
More specifically, let

Σk =
1

λU

|C|∑
c=1

µcX
V
c −Hk−1, (18)

and pk is the eigenvector corresponding to its largest eigen-
value σ(Σk). Then we have

Pk = pkp
>
k . (19)

Once we add new basis to the optimization problem, its
coefficient wk can be found by minimizing the cost function
of primal problem (11). By setting its derivative with respect
to wk to zero, we need to find wk such that

|C|∑
c=1

µc,k−1θc,k exp(−wkξc,k) = 0, (20)

where θc,k , ξc,k − λU 〈Pk, Hk−1〉 − λUwk, and µc,k is the
updated value of µc at the k-th boosting iteration. Note that
as the cost function is convex with respect to wk, there exists
a unique solution for (20), which can be found by any root-
finding algorithm (e.g., bisection search [36]). In practice,
we have found that the performance of the algorithm is not
sensitive to the coefficient wk, and therefore can also simply
set to be a fixed small constant, as in ε-boosting [33].

It remains to show the update rule for µc,k, which can
be derived from the KKT conditions of (14). Setting the
derivative of (14) with respect to φVc to zero gives

µc =
exp−φVc∑|C|
c0=1 exp−φVc0

, (21)

which suggests that once we add a new TORO matrix Pk as
a weak learner to the current solution, µc,k is updated by

µc,k =
exp

(
−φVc,k−1 − wk〈XV

c , Pk〉
)

Zk−1
(22)

=
µc,k−1 exp

(
−wk〈XV

c , Pk〉
)

Z ′k−1
,

where Zk−1 and Z ′k−1 are a normalization factor such that∑|C|
c=1 µc,k = 1. Note that the dual variable µc,k plays a role

of the weight of each sample XV
c at the k-th iteration as in

AdaBoost, since each weak learner is obtained by comput-
ing the eigenvector corresponding to the largest eigenvalue
of Σk, which is a linear combination of XV

c , weighted by
µc,k, as shown in (17).

Note that the eigenvalue σ(Σk) can also be used as the
stop criterion of the algorithm, as σ(Σk) < 0 implying that
no TORO matrix violates the constraint (C2), and hence the
algorithm converges.

2.3.2 Computing V given U
Given U , the objective function of B2BML becomes

min
V

log

( |C|∑
c=1

exp−φUc
)

+
λV
2
||V ||2F (23)

s.t. V ∈ Sd+,

which can be solved by using the same optimization proce-
dure as for (11), and therefore is omitted here.

The pseudo-code of TDBML is shown in Algorithm 1,
which iteratively calls the subroutine boosted metric learning
(BML) in Algorithm 2 to alternatingly update U and V .

2.4 Learning Low-Rank Metric

In practice, a low-rank solution of metrics is usually pre-
ferred since it can reduce the memory and model com-
plexity, and therefore may avoid overfitting and improve
the generalization performances. In addition, it also cor-
responds to low-rank projection matrices L and R, which
map the data to a lower dimensional space with more
compact representation. In TDBML, a low-rank solution can
be obtained by limiting the maximum numbers of iterations
T and K . However, the performances of this approach are
usually very poor due to early stop without fully optimizing
the objective function. To this end, we present rank-one cor-
rection (ROC), an efficient approach tailored specifically to
BML, to explicitly controls the rank of a matrix. The pseudo-
code of ROC is summarized in Algorithm 3. Specifically, let
Υ be the desired rank of U or V . ROC maintains the current
solution MQ (MQ can either be U or V ) as a collection of
Q TORO matrices: MQ =

∑Q
q=1 wqPq . Once a new TORO

matrix is added toMQ and rank is larger than Υ, it evaluates
the loss functions of all possible combinations of positive
semi-definite matricesM/q , whereM/q is the metric without
the q-th TORO matrix. Then, ROC keeps the M/q̃ with the
lowest loss and remove Pq̃ from the collection. Although
ROC requires extra resources at each step, it makes TDBML
converge within much fewer iterations since it terminates
the algorithm if MQ+1 has the highest loss.

2.5 Computational Complexity

The main computation cost of the subroutine BML comes
from the eigenvalue decomposition step (i.e., Eq (19)) which
takes O(d2) to find the largest eigenvalue and the cor-
responding eigenvector.3 Updating XU

c and XV
c requires

O(|C|d3) for full-rank matrices. If we set K = 1 for BML,
only rank-one update is required, which takes O(|C|d2).
If ROC is applied, it takes O(|C|d2Υ) to evaluate the loss
function. On the other hand, classical metric learning algo-
rithms have to convert the matrices to the vectors, which
makes them much more computational expensive for high-
dimensional features. For example, it requires O(d4) and

3. For the simplicity of analysis, we assume that m = n = d.
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Algorithm 3 Rank-One Correction (ROC)

Input: Triplet set fXcgjCjc=1 , the desired rank �, the current
metric matrix MQ =

PQ
q=1 wqPq , the new TORO matrix w�P�.

1: Let wQ+1PQ+1 = w�P�.
2: if rank(MQ) < � then
3: MQ =

PQ+1
q=1 wqPq , Q Q+ 1.

4: else
5: for q = 1; : : : ; Q+ 1 do
6: M=q =

PQ+1
q=1;i 6=q wqPq

7: Compute loss(M=q): the loss of M=q using Eq. (11) (or
Eq. (23)).

8: end for
9: ~q = arg minq loss(M=q).

10: Replace w~qP~q with w�P�.
11: end if
Output: The set of TORO matrices fwqPqgQ

q=1, and the metric
matrix MQ =

PQ
q=1 wqPq .

O(d6) at each iteration for BoostMetric and LMNN respec-
tively, as discussed in the section of introduction.

With respect to the memory usage, BoostMetric and
LMNN requires O(|C|d4) to hold the outer product of
the examples in each triplet, while TDBML only requires
O(|C|d2). For instance, if we use a double-precision floating-
point data type, it will take about 74.5 GB for BoostMetric to
hold the outer product of 100 triplets of vectorized 100×100
images, while TDBML only needs 7.6 MB to store the data.

In terms of the convergence of our algorithms, BML
follows BoostMetric, so it naturally inherits the convergence
property of BoostMetric. TDBML is essentially an alternat-
ing optimization, so it can be trivially proved that TDBML
will monotonically reduce the loss function, and hence it
converges [5].

3 EXPERIMENTS

In this section, we first evaluate TDBML on seven bench-
mark data sets of image classification, including COIL100,
COIL 20, MNIST, ORL, USPS, extended Yale data sets, and
the IMM data set. We also evaluate our methods on EEG
content decoding tasks.

3.1 Implementation Details

While BML is mainly motivated by BoostMetric [36], [37],
there are some major modifications to make the algorithm
more efficient.

1) To make the algorithm converge, each time we call
BML, we use the matrix learned at the previous
step as starting point. In other words, the first
base learner of the boosting algorithm is U (t−1) or
V (t−1). By doing so, it can be trivially proved that
TDBML monotonically reduces the loss function at
each iteration.

2) While the boosting iterations K in [36], [37] can
be very large (e.g., 1000), we set K so be a small
number to make the algorithm more efficient. In the
extreme case, we can simply set K = 1, resulting
in a rank-one update at each iteration. In our ex-
periments, we simply set K = 10, the number of

TABLE 2
Summary of the Data Sets used in Experiments

Data Set #ex #dim #class
COIL100 7200 32× 32 = 1024 100
COIL20 1440 32× 32 = 1024 20
MNIST 4000 28× 28 = 784 10
ORL 400 32× 32 = 1024 40
USPS 9298 16× 16 = 256 10
Yale 2414 32× 32 = 1024 38
IMM 240 480×640 = 307200 60

Fig. 1. Examples of the image data sets. From left to right: COIL100,
COIL20, MNIST, ORL, USPS Yale, and IMM data sets.

iterations T = 100, and the regularization parame-
ters λU = λV = 10−4. The rank control parameter
Υ is selected by cross-validation.

3) We use the same approach to generate the triplets
as in [41]. After the metric learning step, the test
examples are classified by using 1-nearest neigh-
bour classifier. We run the experiments 10 times by
randomly splitting the training/testing data set, and
the average results are reported.

3.2 Classification on Benchmark Data Sets
3.2.1 Data Sets
In this section, we use the following seven benchmark data
sets4 in our experiments:

- COIL100 consists of 7200 32 × 32 grayscale images
of 100 objects, with 72 poses for each object.

- COIL20 consists of 1440 32× 32 grayscale images of
20 objects, with 72 poses for each object.

- MNIST is a subset of handwritten digits from Yann
LeCun’s MNIST data set [20]. It consists of 4000 28×
28 grayscale images of handwritten digits 0− 9.

- ORL consists of 400 32 × 32 grayscale face images
of 40 persons. For each person, 10 images are taken
at different times, varying the lighting, facial expres-
sions and facial details.

- USPS consists of 9298 16 × 16 grayscale images of
handwritten digits 0− 9.

- Yale consists of 2414 32 × 32 grayscale face images
of 38 persons. For each person, around 60 images are
taken under different illuminations.

- IMM data set consists of 240 640×480 grayscale face
images of 40 persons. For each person, 6 images are
taken with different facial expression and poses.

4. Available for download from http://www.cad.zju.edu.cn/home/
dengcai/Data/data.html and https://www2.imm.dtu.dk/�aam/
datasets/datasets.html
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TABLE 3
Error rates (%) of the algorithms on different data sets. The best performances are bolded

Euclidean BoostMetric LMNN 2DLMNN Deep Nets TDBML rTDBML
COIL100 4:61� 0:42 3:02� 0:58 4:12� 0:82 2:61� 0:46 1:88� 0:24 2:01� 0:52 1.85± 0.48
COIL20 1:39� 0:12 1:09� 0:18 1:28� 0:27 0:74� 0:22 1:31� 0:49 0.15± 0.12 0:26� 0:10
MNIST 9:79� 0:92 8:65� 1:16 11.69 �1:40 10:90� 2:04 4.01± 0.30 7:29� 1:12 7:55� 0:96
ORL 8:94� 0:59 5:99� 0:78 6:03� 1:25 3:73� 0:61 6:59� 1:24 1.78± 0.92 2:10� 0:58
USPS 3:32� 0:09 3:64� 0:12 4:16� 0:13 3:63� 0:11 4:77� 0:11 3:22� 0:10 3.13± 0.12
Yale 31:61� 2:40 15:72� 3:68 12:82� 3:12 9:92� 4:16 7.51± 0.62 8:01� 2:32 7:65� 4:28
IMM 30:58� 0:69 15:60� 0:81 13:80� 0:96 8:29� 0:98 6:25� 0:42 5:10� 0:70 9:58� 1:01
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Fig. 2. Test error rates (%) of the algorithms on different data sets with different ratios of training examples.

Table 2 summarizes the statistics of the data sets. Some
examples of the data sets are shown in Figure 1.

3.2.2 Performance Comparison

We evaluate TDBML and rTDBML (low-rank TDBML)
against several baselines, including BoostMetric [36], large
margin nearest neighbor (LMNN) [41], two dimensional
large margin nearest neighbor (2DLMNN) [38], Euclidean
metric, and deep nets model. For the IMM benchmark,
which is a small-scale dataset with a totally of 240 images
of size 640 × 480, we implement the AlexNet [19] as a
deep model while for the rest 6 benchmarks, of whom
the image size is at most 32 × 32, we adopted the LeNet
model [20] as the deep model. The experiment details on
the deep models are presented in the Supplementary mate-
rials. We first randomly generate 50/50 splits of the data
between training and test set for each data set, and the
average results are shown in Table 3. It can be observed
that TDBML and rTDBML outperform other baselines. The
overall performance of 2DLMNN is also better than that of
other one-dimensional baselines, which empirically justifies
our theoretical analysis of the benefits of 2DML.

To further investigate the performances of our algo-
rithms, we also conduct experiments by varying the ratio
of training examples from 10% to 50% (for IMM data set, we
use varying number of training instances of each class from
2 to 5), and the results are shown in Figure 2. Still, TDBML
and rTDBML can demonstrate superior performance for
most scenarios, especially when only a limited number

of examples are available for training. In particular, they
consistently outperform BoostMetric with different ratios of
training examples, especially on the COIL20, USPS, Yale,
and IMM data sets. In addition, they significantly outper-
form 2DLMNN and LMNN on MNIST and USPS, and
achieve comparable performances on the other three data
sets. Compared with the deep models, TDBML and rT-
DBML can show better performance on the COIL20, USPS,
Yale data set, and IMM data sets with a small amount of
training samples (less than four). These results indicate that
the TDBML and rTDBML can more effectively deal with the
examples represented by matrices.

3.2.3 Running Time Comparison

In this section, we verify the efficiency of TDBML and
rTDBML on a synthetic data set. We randomly generate
10 triplets of m × n matrices and vary m = n from 10 to
50, and the running time of different algorithms is shown
in Figure 3. It can be observed that the running time of
TDBML and rTDBML (we have fixed Υ = 10) is comparable
with other baselines when the matrix size is small. As the
matrix size increases, TDBML and rTDBML become become
significantly faster than other algorithms, as expected. In
addition, when the matrix size is small, rTDBML can be
slower than TDBML as it requires extra computation cost
to perform ROC to maintain a low-rank metric. As the
matrix size increases, rTDBML is faster than TDBML as
it can terminate the algorithm early when a new TORO
matrix cannot contribute to the solution more than existing
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Fig. 4. Converge behavior and test error rates (%) of TDBML and
rTDBML on the COIL100 and COIL20 data sets.

ones. On the other hand, although 2DLMNN also deals with
matrices directly, it still has relatively high computational
cost, due to its inefficient projected gradient descent.

3.2.4 Empirical Convergence Analysis
To further analyze the computational efficiency of TDBML
and rTDBML, we investigate their convergence behaviors
on the COIL100 and COIL20 data sets, as shown in Figure 4.
It can be observed that the values of objective function of
TDBML monotonically decrease with the number of itera-
tions. In other words, as more TORO matrices are added by
solving (17), we can always reduce the value of the objective
function. Consequently, the algorithm only terminates when
it reaches maxIter. On the contrary, rTDBML stops if it
cannot find a new TORO matrix such that the value of the
objective function decreases after ROC. As a result, it usually
converges within 20 boosting iterations, and hence is much
faster than TDBML. On the other hand, the test error rates
of TDBML drop rapidly within in very few iterations, and
become stable afterwards. In fact, increasing the number
of iterations may even incur overfitting. Overall, rTDBML
achieves comparable performances with TDBML with much
less iterations and computation cost.

3.2.5 Parameter Sensitivity Analysis
In TDBML, we have simply kept λU , λV , maxIter, and K
fixed, and in Section 3.2.4 have investigated the influence of
number of iterations. In this section, we empirically examine
the influences of other parameters.

Table 4 shows the error rates of TDBML with different
values of λU and λV , where we have set λU = λV . It can

be observed that the learning performances of TDBML are
not affected by λU and λV as long as they are sufficiently
small. For rTDBML, there is another tuning parameter, the
rank-control parameter Υ. Figure 5 shows the test error
rates of rTDBML with different values of desired rank Υ
for each dimension on the COIL100 and Yale data sets.
Overall, the algorithm is relatively robust to the values of Υ,
though the metrics with higher rank tend to achieve better
performances. The test error rates of rTDBML are low for a
wide range of values of Υ as long as it is not too small.

3.3 EEG Content Decoding
The objective of this task is to decode the content of infor-
mation in EEG signals, which has been actively studied in
the fields such as brain computer interface (BCI) [43] and
memory research [35]. In this section, we evaluate TDBML
on three benchmark data sets of EEG content decoding
from BCI competitions, namely, Data Set IIIa [34] from
Competition III (III-IIIa), Data Set IVa [9] from Competition
III (III-IVa), and Data Set IIa [26] from Competition IV (IV-
IIa).

- Data Set IIIa [34] from BCI Competition III (III-IIIa).
This data set consists of EEG signals from three
subjects who performed left hand, right hand, foot,
and tongue motor imagery. In this study, only the
EEG signals of the left hand and right hand motor
imagery are used. The signals were recorded using
60 channels, sampled at 250 Hz. The EEG signals
consist of a training set and a test set, both containing
45 trials per class for subject k3, and 30 trials per class
for subjects k6 and l1.

- Data Set IVa [9] from BCI Competition III (III-IVa).
This data set consists of the EEG signals from five
subjects who performed right hand and foot motor
imagery. The signals were recorded using 118 chan-
nels, sampled at 100 Hz. The signals consist of a
training set and a test set, containing 280 trials in
total for each subject. The numbers of training trials
are 168, 224, 84, 56, 28 for subjects aa, al, av, aw, and
ay, respectively, and the remaining trials are used as
the test set.

- Data Set IIa [26] from BCI Competition IV (IV-IIa).This
data set consists of EEG signals from nine subjects
(A01 – A09) who performed left hand, right hand,
foot, and tongue motor imagery. The signals were
recorded using 22 channels, sampled at 250 Hz. For
each subject, the EEG signals consist of a training set
and a test set, both containing 72 trials per class.

Dealing with EEG signals directly by TDBML is not only
computationally attractive, but also intuitively reasonable.
Given a set of EEG signals X ∈ Rm×n, the left metric matrix
U ∈ Rm×m can be regarded as a spatial filter, and the right
metric matrix V ∈ Rn×n can be regarded as a temporal
filter. In this study, we only consider rTDBML since a full-
rank metric can overfit the training examples. In addition,
we also augment the examples with the covariance matrix
S = XX> as it contains the information of event-related
desynchronization/synchronization (ERD/ERS), which are
important for classifying the cerebral activity of a specific
task (e.g., imagery of hand movements).
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TABLE 4
Error rates (%) of TDBML with different values of �U and �V (�U = �V )

10�7 10�6 10�5 10�4 10�3 10�2

COIL100 2:01� 0:51 2:03� 0:51 2:01� 0:49 2:01� 0:52 2:01� 0:52 2:01� 0:50
COIL20 0:15� 0:12 0:15� 0:12 0:15� 0:12 0:15� 0:12 0:15� 0:12 0:15� 0:11
MNIST 7:29� 1:12 7:29� 1:11 7:29� 1:12 7:29� 1:12 7:29� 1:12 7:31� 1:24
ORL 1:78� 0:92 1:78� 0:92 1:78� 0:92 1:78� 0:92 1:78� 0:92 1:78� 0:98
USPS 3:22� 0:10 3:22� 0:10 3:22� 0:10 3:22� 0:10 3:22� 0:10 3:24� 0:11
Yale 8:01� 2:32 8:01� 2:32 8:01� 2:32 8:01� 2:32 8:01� 2:32 8:04� 2:01
IMM 5:05� 0:52 5:05� 0:52 5:10� 0:70 5:10� 0:70 5:10� 0:70 5:14� 0:76
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Fig. 5. Test error rates of rTDBML on COIL100 and Yale data sets with
different values of �.

For each data set, the EEG signals from 1 to 2 seconds
after the cue instructing the subjects to perform motor
imagery are used, and the data are bandpass-filtered in 8-30
Hz using 5th-order Butterworth filter, since this frequency
band includes the signals involved in performing motor
imagery. Consequently, the feature dimensions of the data
sets are 60 × 250 = 15000, 118 × 100 = 18000 and
22 × 250 = 5500 respectively, which makes the problem
infeasible for one-dimensional metric learning algorithms.
Therefore, we consider two feature extraction methods to
reduce the feature dimensions. The first one is PCA and
the second one is common spatial pattern (CSP) [6], a
classical feature extraction method for multichannel EEG
signal analysis for BCIs. Specifically, CSP aims to find spatial
filters that maximizes the projected variance ratio between
the covariance matrices of two classes of brain activities.
More formally, let S1, S2 ∈ SC+, respectively, be the empirical
covariance matrices of class 1 and class 2, the objective of
CSP is to solve the following simultaneous diagonalization
problem:

max
W∈Rm�s

trace (Λ)

s.t. W>X>1 X1W = Λ, W>X>2 X2W = I,

where s is the number of spatial filters, Λ ∈ Rs×s is a diago-
nal matrix, and I is the identity matrix. In the experiments,
we set s = 3, as suggested in [23]. After dimensionality
reduction using PCA or CSP, the features are classified
using k-NN performed with one of the following metrics:
Euclidean, BoostMetric, and LMNN. For comparison pur-
pose, only the EEG signals from the left hand and right
hand motor imagery are used, since CSP is only designed to
extract the spatial features for binary classification problems.

Table 5 reports the average classification accuracies of
different algorithms. Overall, PCA cannot extract useful
features for EEG classification, and therefore the algorithms

based on PCA have much lower accuracies than other
algorithms. On the other hand, as a supervised feature
extraction method, CSP learns spatial filters that maximize
the projected variance ratio between the covariance matrices
of two classes of brain activities. As a result, it significantly
improves the learning performances. rTDBML is also a
supervised learning algorithm. More important, it learns not
only spatial filters, but also temporal filters. As a result, it
may extract more informative features for EEG classifica-
tion. We observe that rTDBML outperforms other baselines
on 11 out of 17 subjects, and achieve the highest average
classification accuracy, yielding an average improvement of
14.55% over PCA+k-NN, and of 1.86% over the second best
algorithm (i.e., CSP+BoostMetric).

We further investigate the effectiveness of rTDBML by
varying the ratio of training examples. For each competition
data set, we first put the training and test trials together,
and then randomly split data into training and test set
with different ratios. For each ratio, we repeat the process
10 times and the average test error rates with standard
deviations are reported in Figure 6. It can be observed that
rTDBML outperforms other baselines, especially on the data
sets III-IIIa and III-IVa. Compared with results on the image
data sets, however, the improvements are not significant. We
speculate that the reason is two-fold: 1. The baseline algo-
rithms compared with in Figure 6 are based on CSP, which
has been proven a powerful approach to extracting spatial
features and reducing dimensionality of EEG signals [23]; 2.
In BCI, spatial information is more important than temporal
information for EEG content decoding [6], [31]. Neverthe-
less, Figure 6 still indicates that the overall content decoding
performances still benefit from both spatial and temporal
information extracted by rTDBML.

4 CONCLUSION

In this paper, we theoretically justify the benefits of 2DML
by showing that its Rademacher complexity has a faster
convergence rate than 1DML. To the best of our knowledge,
this is the first time in the literature that the benefits of a two
dimensional learning algorithm have been systematically
studied. In addition, we also present TDBML, an efficient
algorithm for two dimensional metric learning of matrix
data. Instead of vectorizing the matrix data as in classical
metric learning algorithms, TDBML works directly on the
data in matrix representation, and therefore scales well the
feature dimensions. In addition, we also propose a method
to explicitly control the rank of the metric matrices by
rank-one correction. Empirical evaluation on both image
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TABLE 5
Classification accuracy (%) of different algorithms on EEG content decoding data sets. The best performances are bolded.

Data Set Subject PCA
+Eculidean

PCA
+BoostMetric

PCA
+LMNN

CSP
+Eculidean

CSP
+BoostMetric

CSP
+LMNN

rTDBML

III-IIIa
k3 77:78 81:11 84:44 94:44 96:67 98.89 98.89
k6 51:11 61:67 61:11 63:33 62:22 67:78 71.67
l1 81:11 88:89 84:44 93:33 96:67 93:33 98.33

Average 70:00 77:22 76:66 83:70 85:19 86:67 89.63

III-IVa

aa 57:14 62:50 60:71 66:07 71:43 66:96 76.79
al 83:93 87:50 89:29 94:90 94:64 94:90 96.43
av 47:45 45:41 47:45 53:57 54.08 52:04 52:04
aw 66:96 68:75 63:84 71:43 80.35 77:68 79:02
ay 56:75 49:60 57:54 51:59 63:10 67:46 70.63

Average 62:45 62:75 63:76 67:51 72:72 71:81 74.98

IV-IIa

A01 76:39 77:78 79:86 86:11 90:28 91.67 91.67
A02 51:39 52:08 52:08 53:47 56.25 54:86 55:56
A03 81:25 88:89 91:67 96.53 95:84 96.53 95:84
A04 60:42 65:28 67:37 72:92 70:84 71:53 73.61
A05 54:86 52:08 49:60 54:17 60:42 61:81 63.89
A06 60:42 68:06 65:28 72.92 71:53 70:14 70:84
A07 63:89 68:06 69:45 79:17 81:25 79:86 82.64
A08 70:14 74:31 72:92 93.75 92:37 92:37 91:67
A09 75:00 81:25 81:25 90:28 93.75 92:37 93.75

Average 65:97 69:75 69:94 77:70 79:17 79:02 79.94

Overall average 65:65 69:01 69:31 75:76 78:33 78:25 80.19
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Fig. 6. Test error rates (%) of the algorithms on different data sets with different ratios of training examples.

classification and EEG content decoding shows that TDBML
algorithms outperform the baselines in terms of both accu-
racy and scalability.

In the future, we are particularly interested in the further
study of the application of TDBML on EEG signal analysis.
First, it would be interesting to further investigate the spatial
and temporal filters learned by TDBML, as they could possi-
bly give some neurophysiologically meaningful explanation
of the metric matrices. In addition, as we learn a low rank
matrices U and V , the EEG signals are actually projected
into lower dimensional space by a bilinear transformation.
The compressed EEG segment could be regarded as a sig-
nature that captures the essence of the signal. A further
look at these compressed signals may reveal some insights
into the brain activities. In addtion, besides the explicit
rank control, we are also interested in other regularization
approaches to control the model complexity and incorporate
prior knowledge. Finally, we are also interested in extending
our theoretical analysis to other two-dimensional or bilinear
algorithms, such as PCA [45], support vector machines [32],
logistic regression [39], and deep metric learning [18].
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