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Generalizing knowledge to unseen domains, where data and labels are unavailable, is crucial for machine
learning models. We tackle the domain generalization problem to learn from multiple source domains
and generalize to a target domain with unknown statistics. The crucial idea is to extract the underlying
invariant features across all the domains. Previous domain generalization approaches mainly focused on
learning invariant features and stacking the learned features from each source domain to generalize to a
new target domain while ignoring the label information, which will lead to indistinguishable features
with an ambiguous classification boundary. One possible solution is to constrain the label-similarity
when extracting the invariant features and take advantage of the label similarities for class-specific cohe-
sion and separation of features across domains. Therefore we adopt optimal transport with Wasserstein
distance, which could constrain the class label similarity, for adversarial training and also further deploy
a metric learning objective to leverage the label information for achieving distinguishable classification
boundary. Empirical results show that our proposed method could outperform most of the baselines.
Furthermore, ablation studies also demonstrate the effectiveness of each component of our method.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Recent years witness a rapid development of machine learning
and its succeeded applications such as computer vision [29], natu-
ral language processing [32] and cross-modalities learning [55]
with many real-world applications [28]. Traditional machine learn-
ing methods are typically based on the assumption that training
and testing datasets are from the same distribution. However, in
many real-world applications, this assumption may not hold, and
the performance could degrade rapidly if the trained models are
deployed to domains different from the training dataset [11]. More
severely, to train a high-performance vision system requires a large
amount of labelled data, and getting such labels may be expensive.
Taking a pre-trained robotic vision system as an example, during
each deployment task, the robot itself (e.g. position and angle),
the environment (e.g. weather and illumination) and the camera
(e.g. resolution) may result in different image styles. The cost to
annotate enough data for each deployment task could be very
expensive.

This kind of problem has been widely addressed by transfer
learning (TL) [52,55], multi-task learning (MTL)[53,54] and domain
adaptation (DA) [11,56]. In DA, a learner usually has access to the
labelled source data and unlabelled target data, and it is typically
trained to align the feature distribution between the source and
target domain. However, in many cases, we could not expect the
target data is accessible for the learner. In the robot example, the
distribution divergences (e.g. different image styles) from training
to testing domain can only be identified after the model is trained
and deployed. In this scenario, it’s unrealistic to collect samples
before deployment. This would require a robot to have abilities
to handle domain divergences even though the target data is
absent, i.e. the model should have the ability to generalize well
to an unseen domain.

We tackle this kind of problem under domain generalization
(DG) paradigm, under which the learner has access to many source
domains (data and corresponding labels), and aims at generalizing
to the new (target) domain, where both data and labels are
unknown. The goal of DG is to learn a prediction model on training
puting,

https://doi.org/10.1016/j.neucom.2020.09.091
mailto:bwang@csd.uwo.ca
mailto:brahim.chaib-draa@ift.ulaval.ca
https://doi.org/10.1016/j.neucom.2020.09.091
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
https://doi.org/10.1016/j.neucom.2020.09.091


F. Zhou, Z. Jiang, C. Shui et al. Neurocomputing xxx (xxxx) xxx
data from the seen source domains so that it can generalize well on
the unseen target domain. An underlying assumption behind
domain generalization is that there exists a common feature space
underlying the multiple known source domains and unseen target
domain. Specifically, we want to learn domain invariant features
across these source domains, and then generalize to a new domain.
An example of how domain generalization is processed is illus-
trated in Fig. 1.

A critical problem in DG and DA involves aligning the domain
distributions, which typically are achieved by extracting the fea-
ture representations. Previous DA works usually tried to minimize
the domain discrepancies, such as KL-divergence and Maximum
Mean Discrepancy (MMD) etc. via adversarial training, to achieve
domain distribution alignments. Due to the similar problem setting
between DA and DG, many previous approaches directly adopt the
same adversarial training technique for DG. For example, a MMD
metric is adopted by [23] as a cross-domain regularizer and KL
divergence is adopted to measure the domain shift by [20] for
domain generalization problem. The MMD metric is usually imple-
mented in kernel space, which is not sufficient for large-scaled
applications, and KL divergence is unbounded, which is also insuf-
ficient for a successful measuring domain shift [49].

Besides, previous domain generalization approaches
[16,12,24,9,42] mainly focused on applying similar DA technique
to extract the invariant features and on how to stack the learned
features from each domain for generalizing to a new domain. These
methods usually ignore the label information and will sometimes
make the features became indistinguishable with ambiguous clas-
sification boundaries, a:k:a semantic misalignment problem [8]. A
successful generalization process should guide the learner not only
to align the feature distributions from each domain but also to dis-
criminate the samples in the same class could lie close to each
other while samples from different classes could stay apart from
each other, a:k:a. feature compactness [17].

Aiming to solve this, we adopt Optimal Transport (OT) with
Wasserstein distance to align the feature distribution for domain
generalization since it could constrain labelled source samples of
the same class to remain close during the transportation process
[5]. Moreover, some information theoretical metrics such as KL
divergence is not capable of measuring the inherent geometric
relations among the different domains [1]. In contrast, OT can
exactly measure their corresponding geometry properties. Besides,
compared with [3], OT benefits from the advantages of Wasserstein
distance by its gradient property [1] and the promising generaliza-
tion bound [36]. The empirical studies [14,38] also demonstrated
Fig. 1. Domain Generalization: A learner faces a set labelled data from several source dom
learn to generalize to an unseen domain. Based on the manifold assumption [13], each d
distribution via the source datasets but has no information on the unseen target distrib
domain Dt . for prediction.
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the effectiveness of OT for extracting the invariant features to align
the marginal distributions of different domains.

Furthermore, although the optimal transport process could con-
strain the labelled samples of the same class to stay close to each
other, our preliminary results showed that just implementing opti-
mal transport for domain generalization is insufficient for a cohe-
sion and separable classification boundary. The model could still
suffer from indistinguishable features (see Fig. 4c). In order to train
the model to predict well on all the domains, this separable classi-
fication boundary should also be achieved under a domain-
agnostic manner. That is, for a pair of instances, no matter which
domain they come from, they should stay close to each other if
they are in the same class and vice versa. To this end, we further
promote metric learning as an auxiliary objective for leveraging
the label information from the source domains to achieve a
domain-independent distinguishable classification boundary.

To summarize, we deployed the optimal transport technique
with Wasserstein distance for domain generalization to extract
the domain invariant features. To avoid ambiguous classification
boundary, we proposed to implement metric learning strategies
to achieve a distinguishable feature space. Therefore, we proposed
the Wasserstein Adversarial Domain Generalization (WADG)
algorithm.

In order to check the effectiveness of the proposed approach, we
tested the algorithm on three benchmarks comparing with some
recent domain generalization baselines. The experiment results
showed that our proposed algorithm could outperform most of
the baselines, which confirms the effectiveness of our proposed
algorithm. Furthermore, the ablation studies also demonstrated
the contributions of our algorithm.
2. Related works

2.1. Domain generalization

The goal of DG is to learn a model that can extract common
knowledge shared across source domains and can generalize well
on the target domain. Compare with DA, the main challenge of
DG is that the target domain data is not available during the learn-
ing process.

A common framework for DG is to extract the most informative
and transferable underlying common features from source
instances generated from different distributions and to generalize
to unseen one. This kind of approach assumes that there is an
ains, and it aims at extracting invariant features across the seen source domains and
omain i is supported by distribution Di . The learner can measure the source domain
ution. After training on the source domains, the model is then deployed to a new



Table 1
List of notations.

Symbol Meaning Symbol Meaning

F The feature
extraction function

hf Parameter of feature
extraction network

D The critic function hd Parameter of critic network
C The classification

function
hc Parameter for classification

network
m The number of source

domains
xðiÞj

The i-th instance from the j-
th domain

Ni The number of
instances in the i-th
domain

XðiÞ The set of instances in the i-

th domain XðiÞ ¼ fxðiÞj g
N

j¼1

D The data distribution.
Di are the source
domain distributions

ZðiÞ The extracted feature from
domain i

W1ðDi;DjÞ Wasserstein-1
distance over two
distributions Di and
Dj

yj The label for corresponding
instance xj

S The similarity matrix Si;j The value of i-th row and j-th
column of the similarity
matrix S

wi;j The weight for
similarity Si;j

� Small margin for roughly
select the positive and
negative pairs

a Fixed parameter for
positive mining

b Fixed parameter for negative
mining

k Parameter for self-
similarity mining

kd Coefficient for regularizing
the adversarial objective

ks Coefficient for
regularizing the
metric learning
objective

L The objective functions, LC

is the classification loss, LD

is the adversarial loss, LMS is
the metric similarity loss
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underlying invariant feature distribution among all domains. Con-
sequently, such invariant features can generalize well to a target
domain. Muandet et al. [33] implemented MMD as a distribution
regularizer and proposed the kernel-based Domain Invariant Com-
ponent Analysis (DICA) algorithm. An autoencoder-based model
was proposed by Ghifary et al. [12] under a multi-task learning set-
ting to learn domain-invariant features via adversarial training. Li
et al. [24] proposed an end-to-end deep domain generalization
approach by leveraging deep neural networks for domain-
invariant representation learning. Motiian et al. [32] proposed to
minimize the semantic alignment loss as well as the separation
loss based on deep learning models. Li et al. [23] proposed a low-
rank Convolutional Neural Network model based on domain
shift-robust deep learning methods.

There are also some approaches to tackle the domain general-
ization problems under a meta-learning manner. To the best of
our knowledge, Li et al. [22] first proposed to adopt the Meta
Agnostic Meta-Learning (MAML) [10] which back-propagates the
gradients of ordinary loss function of meta-test tasks, for the
domain generalization problems. As pointed by Dou et al. [8], such
an approach might lead to a sub-optimal solution, as it is highly
abstracted from the feature representations. Balaji et al. [2] pro-
posed MetaReg algorithm in which a regularization function (e:g.
weighted L1 loss) is implemented for the classification layer of
the model but not for the feature extractor layers. Then, Li et al.
[25] proposes an auxiliary meta loss which is gained based on
the feature extractor. Furthermore, the network architecture of
[25] is the widely used feature-critic style model based on a similar
model from domain adversarial training technique [11]. Dou et al.
[8,31] and Matsuura and Harada [31] also started to implement
clustering techniques on the invariant feature space for better clas-
sification and showed better performance on the target domain.

2.2. Metric learning

Metric learning aims to learn a discriminative feature embed-
ding where similar samples are closer while different samples
are further apart [6]. Hadsell et al. [15] proposed the siamese net-
work together with a contrastive loss to guide the instances to stay
close with each other in the feature space if they have the same
labels and push them apart vice versa. Schroff et al. [37] proposed
the triplet loss aiming to learn a feature space where a positive pair
has higher similarity than the negative pair when compared by the
same anchor with a given margin. Oh Song et al. [34] showed that
neither the contrastive loss nor triplet loss could efficiently explore
the full pair-wise relations between instances under the mini-
batch training setting. They further propose the lifted structure loss
to fully utilize pair-wise relations across batches. However, it only
chooses equal number of positive pairs as negative ones randomly,
and many informative pairs are discarded [44], which restricts the
ability to find the informative pairs. Yi et al. [48] proposed the
binomial deviance loss, which could measure the hard pairs. One
remarkable work by Wang et al. [44] combines the advantages
both from lifted structure loss and binomial loss to leverage the
pair-similarity. They proposed to leverage not only pair-
similarities (positive or negative pairs with each other) but also
self-similarity, which enables the learner to collect and weight
informative pairs (positive or negative pairs) under an iterative
(mining and weighting) manner. For a pair of instances, the self-
similarity is gained from itself. Such a multi-similarity has been
shown could measure the similarity and could cluster the samplers
more efficiently and accurately. In the context of domain general-
ization, Dou et al. [8] proposed to guide the learner to leverage
from the local similarity in the semantic feature space, in which
the authors argued may contain essential domain-independent
general knowledge for domain generalization and adopt the con-
3

strastive loss and triplet loss to encourage the clustering for solving
this issue. Leveraging from the across-domain class similarity
information can encourage the learner to extract robust semantic
features that regardless of domains, which is useful auxiliary infor-
mation for the learner. If the learner could not separate the sam-
ples (from different source domains) with domain-independent
class-specific cohesion and separation on the domain invariant fea-
ture space, it would still suffer from ambiguous decision bound-
aries. These ambiguous decision boundaries might still be
sensitive to the unseen target domain. Matsuura and Harada [31]
implement unsupervised clustering on source domains and
showed better classification performance. Our work is orthogonal
to previous works, proposing to enforce more distinguishable
invariant features space via Wasserstein adversarial training and
encouraging to leverage from label similarity information for bet-
ter classification boundary.

3. Preliminaries and problem setup

We start by introducing some preliminaries. In order to better
summarize the notations symbols in this work, we provide the list
of notations and symbols in Table 1.

3.1. Notations and definitions

Suppose we have m known source domains distributions

fDigmi¼1, and ith domain contains Ni labeled instances in total,

denoted by fðxðiÞj ; yðiÞj Þg
Ni

j¼1, where xðiÞj 2 Rn is the jth instance feature

from the ith domain and yðiÞj 2 f1; . . . ;Kg are the corresponding
labels. For a hypothesis class H, the expected source and target
risk of a hypothesis h 2H over domain distribution Di is the prob-
abilities that h wrongly predicts on the entire distribution Di:
�iðhÞ ¼ Eðx;yÞ�Di

‘ðhðx; yÞÞ, where ‘ð�Þ is the loss function. The empir-

ical loss is also defined by: �̂iðhÞ ¼ 1
Ni

PNi
j¼1‘ðhðxj; yjÞÞ.



Fig. 2. Implementing Optimal Transport (OT) for domain generalization: Typically
to directly predict on the unseen domain (the white dashed arrow) is difficult. In
order to learn domain invariant features, as showed in the direction of the green
arrow we adopted the OT technique to achieve domain alignments for extracting
invariant features. After the OT transition, the invariant features can be generalized
to unseen domain.
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In the setting of domain generalization, we only have the access
to the seen source domains Di but have no information about the
target domain. The learner is expected to extract the underlying
invariant feature space across the source domains and generalize
to a new target domain.

3.2. Optimal transport and Wasserstein distance

We follow Redko et al. [36] and define c : Rn � Rn ! Rþ as the
cost function for transporting one unit of mass x to x0, then the pri-
mal form of the Wasserstein distance between Di and Dj could be
computed by,

Wp
pðDi;DjÞ ¼ inf

c2PðDi ;DjÞ

Z
Rn�Rn

cðx;x0Þpdcðx;x0Þ ð1Þ

wherePðDi;DjÞ is the probability coupling on Rn � Rn with margin-
als Di and Dj referring to all the possible coupling functions.
Throughout this paper, we adopt Wasserstein-1 distance only
(p ¼ 1).

To compute the primal form of Wasserstein distance (Eq. (1)) is
computational inefficiently. Assuming jDij ¼ n; jDjj ¼ m, the time
complexity for directly computing Eq. (1) is Oðn3 þm3Þ. On the
contrary, leveraging the Kantorovich-Rubinstein duality [43] of
Wasserstein distances could help to get a more efficient approxi-
mation. Assume f a 1-Lipschitz-continuous w:r:t. the cost function:
kf ðxÞ � f ðx0Þk 6 cðx; x0Þ, we can prove that for any function f,

W1ðDi;DjÞP Ex�Di
dðxÞ � Ex0�Dj

dðx0Þ
The equality arrives when f reaches the maximum of the right side,

W1ðDi;DjÞ ¼ sup
kfkL<1

Ex2Di
f ðxÞ � Ex02Dj

f ðx0Þ ð2Þ

In practice, such a function f could be approximated by a neural-
network, which allows us to compute this Kantorovich-Rubinstein
duality efficiently by computing the expectation and the complexity
w:r:t. f ðxÞ is only OðnþmÞ. Empirically, to compute the sup is equiv-
alent to find out the maximum of W1 (by an arg max operation).
General neural network optimizer (e:g. SGD or Adam) can efficiently
solve the maximum problem to evaluate the dual value of W1

distance.
Optimal transport theory and Wasserstein distance were

recently investigated in the context of machine learning [1] espe-
cially in the domain adaptation area [5,50]. The general idea of
implementing the optimal transport technique for domain general-
ization across domains is illustrated in Fig. 2. To learn domain
invariant features, OT technique is implemented to achieve domain
alignments for extracting invariant features. After the OT transi-
tion, the invariant features can be generalized to unseen domain.

3.3. Metric learning

For a pair of instances ðxi; yiÞ and ðxj; yjÞ, the notion of positive
pairs usually refers to the condition where pair i; j have same
labels (yi ¼ yj), while the negative pairs usually refers to the condi-
tion yi – yj. The central idea of metric learning is to encourage a
pair of instances who have the same labels to be closer, and push
negative pairs to be apart from each other [47].

Follow the framework of Wang et al. [44], we show the general
pair-weighting process of metric learning. Assuming the feature
extractor f parameterized by hf projects the instance x 2 Rn to a

d-dimensional normalized space: f ðx; hf Þ : Rn ! ½0;1�d. Then, for
two samples xi and xj, the similarity between them could be
defined as the inner product of the corresponding feature vector:

Si;j :¼ hf ðxi; hf Þ; f ðxj; hf Þi ð3Þ
4

To leverage the across-domain class similarity information can
encourage the learner to extract the classification boundary that
regardless of domains, which is an useful auxiliary information for
the learner. We further elaborate it in Section 4.2.

4. Proposed method

The high-level idea of WADG algorithm is to learn a domain-
invariant feature space and domain-agnostic classification bound-
ary. Firstly, we align the marginal distribution of different source
domains via optimal transport by minimizing the Wasserstein dis-
tance to achieve the domain-invariant feature space. And then, we
adopt metric learning objective to guide the learner to leverage the
class similarity information for a better classification boundary. A
general workflow of our method is illustrated in Fig. 3a. The model
contains three major parts: a feature extractor, a classifier and a
critic function.

The feature extractor function F, parameterized by hf , extracts
the features from different source domain. For set of instances

XðiÞ ¼ fxðiÞj g
Ni

j¼1 from domain Di, we can then denote the extracted

feature from domain i as ZðiÞ ¼ FðXðiÞÞ. The classification function
C, parameterized by hc , is expected to learn to predict labels of
instances from all the domains correctly. The critic function D,
parameterized by hd, aims to measure the empirical Wasserstein
distance between features from a pair of source domains. For the
target domain, all the instances and labels are absent during the
training time.

WADG aims to learn the domain-agnostic features with distin-
guishable classification boundary. During each train round, the
network receives the labelled data from all domains and train
the classifier under a supervised mode with the classification loss
LC . For the classification process, we use the typical cross-
entropy loss for all m source domains:



Fig. 3. The proposed WADGmethod. (a): the general workflow of WADGmethod. The model mainly consists of three parts, the feature extractor, classifier and critic function.
During training, the model receives all the source domains’ inputs. The feature extractor is trained to learn invariant features together with the critic function in an adversarial
manner. (b): For each pair of source domains Di and Dj , optimal transport process for aligning the features from different domains. (c): The metric learning process. For a
batch of all source domain instances, we first roughly mining the positive and negative pairs via Eq. (7). Then, compute the corresponding weights via Eqs. (11) and (12) to
compute LMS to guide the clustering process.
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LC ¼ �
Xm
i¼1

XNi

j¼1
yj logðPðCðFðxðiÞj ÞÞÞÞ ð4Þ

Through this, the model could learn the category information over
all the domains. The feature extractor F is then trained to minimize
the estimated Wasserstein Distance in an adversarial manner with
the critic D with an objective LD. We then adopt a metric learning
[46] objective (namely, LMS) for leveraging the similarities for a
better classification boundary. Our full method then solve the joint
loss function,

L ¼ arg min
hf ;hc

max
hd

LC þLD þLMS;

where LD is the adversarial objective function, and LMS is the met-
ric learning objective function. In the sequel, we will elaborate these
two objectives in Section 4.1 and Section 4.2, respectively.

4.1. Adversarial domain generalization via optimal transport

As optimal transport could constrain labelled source samples of
the same class to remain close during the transportation process
[5]. We deploy optimal transport with Wasserstein distance
[36,38] for aligning the marginal feature distribution over all the
source domains.

A brief workflow of the optimal transport process for a pair of
source domains is illustrated in Fig. 3b. The critic function D esti-
mates the empirical Wasserstein Distance between each source
domain through a pair of instances from the empirical sets

xðiÞ 2 XðiÞ and xðjÞ 2 XðjÞ. In practice [38], the dual term Eq. (2) of
Wasserstein distance could be computed by,

W1ðXðiÞ;XðjÞÞ ¼ 1
Ni

X
xðiÞ2XðiÞ

DðFðxðiÞÞÞ � 1
Nj

X
xðjÞ2XðjÞ

DðFðxðjÞÞÞ ð5Þ

As in domain generalization setting, there usually exists more that
two source domains, we can sum all the empirical Wasserstein dis-
tance between each pair of source domains,
5

LD ¼
Xm
i¼1

Xm
j¼iþ1

1
Ni

X
xðiÞ2XðiÞ

DðFðxðiÞÞÞ � 1
Nj

X
xðjÞ2XðjÞ

DðFðxðjÞÞÞ
2
4

3
5 ð6Þ

Throughout this pair-wise optimal transport process, the learner
could extract a domain-invariant feature space, we then propose
to apply metric learning approaches to leverage the class label sim-
ilarity for domain independent clustering feature extraction. We
then introduce the metric learning for domain agnostic clustering
in the next section.
4.2. Metric learning for domain agnostic classification boundary

As aforementioned, only aligning the marginal features via
adversarial training is not sufficient for DG since there may exist
an ambiguous decision boundary [8]. When predicting on the tar-
get domain, the learner may still suffer from this ambiguous deci-
sion boundary. To solve this, we propose to implement the metric
learning techniques to help cluster the instances and promote a
better prediction boundary for better generalization.

To solve this, except to the supervised source classification and
alignment of the marginal distribution across domains with the
Wasserstein adversarial training defined above, we then further
encourage robust domain-independent local clustering via leverag-
ing the label information using the metric learning objective. The
brief workflow is illustrated in Fig. 3c. Specifically, we adopt the
metric learning objective to require the images regardless of their
domains to follow the two aspects: 1) images from the same class
are semantically similar, thereby should be mapped nearby in the
embedding space (semantic clustering), while 2) instances from
different classes should be mapped apart from each other in the
embedding space. Since the goal of domain generalization is to
learn to hypothesis that could predict well on all the domains,
the clustering process should also be achieved in a domain-
agnostic manner.
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To this end, we mix the instances from all the source domains
together and encourage the clustering for domain agnostic features
via the metric learning techniques [46] to achieve a domain-
independent clustering decision boundary. For this, during each

training iteration, for a batch fxðiÞ1 ; yðiÞ1 ; . . . ;xðiÞb ; yðiÞb g
m

i¼1 from m source
domains with batch size b, we mix all the instances from each

domain and denoted by fðxB
i ; y

B
i Þg

m0

i¼1 with total size m0. We first
measure the relative similarity between the negative and positive
pairs, which is introduced in the next sub-section.

4.2.1. Pair similarity mining
Assume xB

i is an anchor, a negative pair fxB
i ;x

B
j g and a positive

pair fxB
i ;x

B
j0 g are selected if Sij and Si;j0 satisfy the negative condition

S�i;j and the positive condition Sþi;j, respectively:

S�i;j P min
yi¼yk

Si;k � �; Sþi;j0 6 min
yi–yk

Si;k þ � ð7Þ

where � is a given margin. Through Eq. (7) and specific margin �, we
will have a set of negative pairsN and a set of positive pairsP. This
process (Eq. (7)) could roughly cluster the instances with each
anchor by selecting informative pairs (inside of the margin), and
discard the less informative ones (outside of the margin).

With such roughly selected informative pairsN andP, we then
assign the instance with different weights. Intuitively, if an
instance has higher similarity with an anchor, then it should stay
closer with the anchor and vice versa. We introduce the weighting
process in the next section.

4.2.2. Pair weighting
For instances of positive pairs, if they are more similar with the

anchor, then it should have higher weights while give the negative
pairs with lower weights if they are more dissimilar, no matter
which domain they come from. Through this process, we can push
the instances into several groups via measure their similarities.

For N instances, computing the similarity between each pair
could result in a similarity matrix S 2 RN�N . For a loss function
based on pair similarity, it can usually be defined by FðS; yÞ. Let
Si;j be the ith row, jth column element of matrix S. The gradient
w:r:t the network could be computed by,

@FðS; yÞ
@hf

¼ @FðS; yÞ
@S

@S
@hf
¼

XN
i¼1

XN
j¼1

@FðS; yÞ
@Si;j

@Si;j
@hf

ð8Þ

Eq. (8) could be reformulated into a new loss function LMS as,

LMS ¼
XN
i¼1

XN
j¼1

@FðS; yÞ
@Si;j

Si;j ð9Þ

usually, the metric loss defined w:r:t similarity matrix S and label y
could be reformulated by Eq. (9). The term @FðS;yÞ

@Si;j
in Eq. (9) could be

treated as an constant scalar since it doesn’t contain the gradient of

LMS w:r:t hf . Then, we just need to compute the gradient term @Fi;j

@hf

for the positive and negative pairs. Since the goal is to encourage
the positive pairs to be closer, then we can assume the gradient

6 0; i:e., @Fi;j

@hf
6 0. Conversely, for a negative pair, we could assume

@Fi;j

@hf
P 0. Thus, Eq. (9) is transformed by the summation over all

the positive pair (yi ¼ yj) and negative pairs (yi – yj),
6

LMS ¼
XN
i¼1

XN
j¼1

@FðS;yÞ
@Si;j

Si;j

¼
XN
i¼1

XN
j¼1;yj–yi

@FðS;yÞ
@Si;j

Si;j þ
XN

j¼1;yj¼yi

@FðS;yÞ
@Si;j

Si;j

0
@

1
A

¼
XN
i¼1

XN
j¼1;yj–yi

wi;jSi;j �
XN

j¼1;yj¼yi
wi;jSi;j

0
@

1
A

ð10Þ

where wi;j ¼ j @Si;j@hf
j is regarded as the weight for similarity Si;j. For

each pair of instances i; j, we could assign different weights accord-
ing to their similarities Si;j. Then wþi;j or w

�
i;j could be defined as the

weight of a positive or negative pairs’ similarity, respectively. Previ-
ously, [52,44] applied a soft function for measuring the similarity.
We then consider the similarity of the pair itself (i:e. self-
similarity), the negative similarity and the positive similarity. The
weight of self-similarity could be measured by expðSi;j � kÞ with a
small threshold k. For a selected negative pair fxB

i ;x
B
j g 2N the cor-

responding weight (see Eq. (10)) could be defined by the soft func-
tion of self-similarity together with the negative similarity:

w�i;j ¼ 1

expðbðk�SijÞÞþ
X
k2N

expðbðSi;k�kÞÞ

¼ expðbðSij�kÞÞ
1þ
X
k2N

expðbðSik�kÞÞ

ð11Þ

Similarly, the weight of a positive pair fxB
i ; x

B
j g 2 P is defined by,

wþi;j ¼
1

expð�aðk� Si;jÞÞ þ
X
k2P

expð�aðSi;k � Si;jÞÞ
ð12Þ

Then, take Eqs. (11) and (12) into Eq. (10), and integrate Eq. (10)
with the similarity mining Si;j, we have the objective function for
clustering,

LMS ¼ 1
m

Xm
i¼1

1
a
log½1þ

X
k2Pi

expð�aðSik � kÞÞ� þ 1
b
log½1

8<
:

þ
X
k2Ni

expðbðSik � kÞÞ�g ð13Þ

where k; a and b are fixed hyper-parameters, we elaborate them in
the empirical setting Section 5.2. Then, the whole objective of our
proposed method is,

L ¼ argmin
hf ;hc

max
hd

LC þ kdLD þ ksLMS ð14Þ

where kd and ks are coefficients to regularize Ld and LMS

respectively.
Based on these above, we propose the WADG algorithm in Algo-

rithm 1. And we show the empirical results in the next section.

Algorithm 1. The proposed WADG algorithm (one round)

Require: Samples from different source domains fDigMi¼1
Ensure: Neural network parameters hf ; hc; hd

1: for mini-batch of samples fðxðiÞs ; yðiÞs Þg from source domains
do

2: Compute the classification loss LC over all the domains
according to Eq. (4)

3: Compute the Wasserstein distanceLD between each pair
of source domains according to Eq. (6)

4: Mix the pairs from different domains and compute the
similarity by Eq. (3)
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Algorithm 1. The proposed WADG algorithm (one round)

5: Roughly select the positive and negative pairs by solving
Eq. (7)

6: Compute similarity loss LMS on all the source instances
by Eq. (13)

7: Update hf ; hc and ld by solving Eq. (14) with learning rate
g:

hf  hf � g @ðLCþkdLDþksLMS Þ
@hf

;

hc  hc � g @ðLCþkdLDþksLMS Þ
@hc

;

hd  hd þ g @LD
@hd

8: end for
9: Return the optimal parameters hHf ; h

H
c and hHd
Table 2
The hyper-parameter values for experiments.

Hyper-
parameters

Value Hyper-
parameters

Value

learning rate PACS & VLCS:

½5� 10�4; 5� 10�5�
k 1:0

Office-home: 2� 10�4 a 2:0

kd kd ¼ 2
1þexpð�10pÞ � 1 b 40:0

ks ½1e� 4;1e� 5� � 0:1
5. Experiments and results

5.1. Datasets

In order to evaluate our proposed approach, we implement
experiments on three common used datasest: VLCS [39], PACS
[20] and Office-home [41] dataset. The VLCS dataset contains
images from 4 different domains: PASCAL VOC2007 (V), LabelMe
(L), Caltech (C), and SUN09 (S). Each domain includes five classes:
bird, car, chair, dog and person. PACS dataset is a recent benchmark
dataset for domain generalization. It consists of four domains:
Photo (P), Art painting (A), Cartoon (C), Sketch (S), with objects
from seven classes: dog, elephant, giraffe, guitar, house, horse, per-
son. Office-Home is a more challenging dataset, which contains
four different domains: Art (Ar), Clipart (Cl), Product (Pr) and Real
World (Rw), with 65 categories in each domain. Previous work
showed that no matter the adversarial model is trained under
supervised [27], semi-supervised [50] or unsupervised [26] way,
the model will suffer from learning the diverse feature. To test
our domain generalization model on these datasets could help to
affirm the effectiveness of our approach.

5.2. Baselines and Implementation details

To show the effectiveness of our proposed approach, we com-
pare our algorithm on the benchmark datasets with the following
recent domain generalization methods.

� Deep All: We follow the standard evaluation protocol of Domain
Generalization to set up the pre-trained Alexnet or ResNet-18
fine-tuned on the aggregation of all source domains with only
the classification loss.
� TF [21]: A low-rank parameterized Convolution Neural Network
model which aims to reduce the total number of model param-
eters for an end-to-end Domain Generalization training.
� CIDDG [24]: Matches the conditional distribution by change the
class prior.
� MLDG [22]: The meta-learning approach for domain generaliza-
tion. It runs the meta-optimization on simulated meta-train/
meta-test sets with domain shift
� CCSA [32]: The contrastive semantic alignment loss was
adopted together with the source classification loss function
for both the domain adaptation and domain generalization
problem.
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� MMD-AAE [23]: The Adversarial Autoencoder model was
adopted together with the Mean-Max Discrepancy to extract a
domain invariant feature for generalization.
� D-SAM [9]: It aggregates domain-specific modules and merges
general and specific information together for generalization.
� JiGen [4]: It achieves domain generalization by solving the Jig-
saw puzzle via the unsupervised task.
� MASF [8]: A meta-learning style method which based on MLDG
and combined with Consitrastive Loss/ Triplet Loss to encourage
domain-independent semantic feature space.
� MMLD [31]: An approach that mixes all the source domains by
assigning a pseudo domain label for extract domain-
independent cluster feature space.

Following the general evaluation protocol of domain generaliza-
tion (e:g. [8,31]), on PACS and VLCS dataset. We first test our algo-
rithm on by using AlexNet [19] backbones by removing the last
layer as feature extractor. For preparing the dataset, we follow
the train/val./test split and the data pre-processing protocol of
[31]. As for the classifier, we initialize a three-layers MLP whose
input has the same number of inputs as the feature extractor’s out-
put and to have the same number of outputs as the number of
object categories (2048-256-256-K), where K is the number of
classes. For the critic network, we also adopt a three-layers MLP
(2048-1024-1024-1). For the metric learning objective, we use
the output of the second layer of classifier network (with size
256) for computing the similarity.

In order to better demonstrating the hyper-parameters used in
this work, we firstly summarized the value of hyper-parameters in
Table 2. The corresponding descriptions are provided in the follow-
ing parts. We adopt the ADAM [18] optimizer for training with ini-
tial learning rate ranging from 5� 10�4 to 5� 10�5 for the whole
model together with mini-batch size 64. For stable training, we
set coefficient kd ¼ 2

1þexpð�10pÞ � 1 to regularize the adversarial loss,

where p is the training progress, to regularize the adversarial loss.
This regularization scheme kd has been widely used in adversarial
training based domain adaptation and generalization setting (e:g.
[27,46,31]) and have been proved could help to stabilize the train-
ing process. For the setting of ks, we follow the setting of [8] and set
the value to 10�4. In our preliminary validation results, the perfor-
mance is not sensitive with kd 2 ½0;1�. We also tried to range ks
from 10�4 to 10�6 via reverse validation and didn’t observe obvious
differences.

For the hyper-parameters in LMS (see Eqs. (7) and (13)), we
empirically set k ¼ 1:0; � ¼ 0:1; a ¼ 2:0; b ¼ 40:0. � is for roughly
selecting the positive and negative pairs and k is a small margin
parameters. Previous work [45] has shown that choosing � ¼ 0:1
and k ¼ 1:0 could be optimal performance for general metric learn-
ing problems, our preliminary validation results also showed that
when k 2 ½0:5;2:0�, the performance didn’t have too much differ-
ence in our domain generalization tasks. Besides, a and b are two
parameters used for positive and negative mining referred by
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[40] in which awas set to 2:0 and bwas set to 50:0. In our paramil-
itary validation results, we found the setting of b 2 ½35:0;45:0�
could guarantee stable performance in our domain generalization
problems but rather 50:0 in the original [40] and a 2 ½1:0;5:0�
could also have good performance. Based on those findings we
report the empirical results with a ¼ 2:0 and b ¼ 40:0.

Follow the setting of [4], we then examined our algorithm on
office-home dataset. For this Office-home dataset, we also use
reverse validation to set the learning rate as 2e� 4 for the whole
model together with mini-batch size 128. For the rest hyper-
parameters, we keep the same with PACS and VLCS experiments.
To avoid over-training, we also adopt the early stopping technique.
All the experiments are implemented by Pytorch [35].
5.3. Experiments results

We firstly report the empirical results on PACS and VLCS dataset
using AlexNet as feature extractor. For each generalization task, we
train the model on all the source domains and test on the target
domain and report the average of top 5 accuracy. The results on
PACS and VLCS dataset using AlexNet are reported in Tables 3
and 4, respectively. For each table, the empirical results refers to
Table 3
Empirical Results (accuracy %) on PACS dataset with pre-trained AlexNet as Feature Extract
example, the third column ‘Cartoon’ refers to the generalization tasks where domain Cartoo
values are marked as bold.

Method Art Cartoon

Deep All 63:30 63:13
TF [21] 62:86 66:97
CIDDG [24] 62:70 69:73
MLDG [22] 66:23 66:88
D-SAM [9] 63:87 70:70
JiGen [4] 67:63 71:71
MASF [8] 70:35 72:46
MMLD [31] 69:27 72:83

Ours 70:21 72:51

The best values are marked as bold.

Table 4
Empirical Results (accuracy %) on VLCS dataset with pre-trained AlexNet as Feature Extra

Method Caltech LabelMe

Deep All 92:86 63:10
D-MATE [12] 89:05 60:13
CIDDG [24] 88:83 63:06
CCSA [32] 92:30 62:10
SLRC [7] 92:76 62:34
TF [21] 93:63 63:49
MMD-AAE [23] 94:40 62:60
D-SAM [9] 91:75 56:95
MLDG [22] 94:4 61:3
JiGen [4] 96:93 60:90
MASF [8] 94:78 64:90
MMLD [31] 96:66 58:77

Ours 96:68 64:26

The best values are marked as bold.

Table 5
Empirical Results on Office-home dataset. The best values are marked as bold.

Art Clipart

Deep All 52:15 45:86
D-SAM [9] 58:03 44:37
JiGen [4] 53:04 47:51

Ours 55:34 44:82

The best values are marked as bold.
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the average accuracy about training on source domains while test-
ing on the target domain. From the empirical results, we could see
our method could outperform the baselines both on the PACS and
VLCS dataset, indicating an improvement on benchmark perfor-
mances. This showed the effectiveness of our proposed method.
Except to these two common evaluation benchmark, to show the
effectiveness of our method on more large-scaled dataset, we then
report the empirical results on Office-home dataset in Table 5. As
stated before, Office-home is a more larger and challenging dataset
contains more diverse features from 65 different classes. To evalu-
ate the performance on this dataset requires large amount of com-
putational resources. Due to the limits, we follow the evaluation
protocol of [4] to report the empirical results. From those results,
we could observe that our algorithm could outperform the previ-
ous Domain Generalization method, this also confirm the effective-
ness of our proposed method.
5.4. Further analysis

To further show the effectiveness of our algorithm especially on
more deep models, follow Dou et al. [8], we also report the results
of our algorithm by using ResNet-18 backbone on PACS dataset in
or. For each column, we refer the generalization tasks as the target domain name. For
n is the target domain while the model is trained on the rest three domains. The best

Sketch Photo Avg.

54:07 87:70 67:05
57:51 89:50 59:21
64:45 78:65 68:88
58:96 88:00 70:01
64:66 85:55 71:20
65:18 89:00 73:38
67:33 90:68 75:21
66:44 88:98 74:38

70:32 89:81 75:71

ctor. The best values are marked as bold.

Pascal Sun Avg.

68:67 64:11 72:19
63:90 61:33 68:60
64:38 62:10 69:59
67:10 59:10 70:15
65:25 63:54 70:97
69:99 61:32 72:11
67:70 64:40 72:28
58:95 60:84 67:03
67:7 65:9 73:30
70:62 64:30 73:19
69:14 67:64 74:11
71:96 68:13 73:88

71:47 66:62 74:76

Product Real-World Avg.

70:86 73:15 60:51
69:22 71:45 60:77
71:47 72:79 61:20

72:03 73:55 61:44



Table 6
Empirical Results (accuracy %) on PACS dataset with pre-trained ResNet-18 as feature extractor. The best values are marked as bold.

Method Art Cartoon Sketch Photo Avg.

Deep All 77:87 75:89 69:27 95:19 79:55
D-SAM [9] 77:33 72:43 77:83 95:30 80:72
JiGen [4] 79:42 75:25 71:35 96:03 80:51
MASF [8] 80:29 77:17 71:69 94:99 81:04
MMLD [31] 81:28 77:16 72:29 96:09 81:83

Ours 81:56 78:02 78:43 95:82 83:45

The best values are marked as bold.

Table 7
Ablation Studies on PACS dataset on all components of our proposed method using AlexNet and ResNet-18 backbone. The best values are marked as bold.

AlexNet ResNet-18

Ablation Art Carton Sketch Photo Avg. Art Carton Sketch Photo Avg.

Deep All 63:30 63:13 54:07 87:70 67:05 77:87 75:89 69:27 95:19 79:55
No LD 65:80 69:64 63:91 89:53 72:22 74:62 73:02 68:67 94:86 77:79
No LMS 66:78 71:47 68:12 88:87 73:65 78:25 76:27 73:42 95:68 80:91
LMS w.o. wþ 66:31 70:86 67:11 88:97 73:31 80:58 77:95 75:13 95:63 82:32
LMS w.o. w� 66:41 70:95 68:73 87:38 73:37 79:98 77:65 77:89 95:21 82:68
WADG-All 70:21 72:51 70:32 89:81 75:71 81:56 78:02 78:43 95:82 83:45

The best values are marked as bold.

Fig. 4. t-SNE visualization of ablation studies on PACS dataset for Target domain as Photo. Detailed analysis is presented in Section 5.4.
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Fig. 5. t-SNE visualization of ablation studies on VLCS dataset for Target domain as Caltech. Detailed analysis is presented in Section 5.4.
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Table 6. The ResNet-18 backbone’s output feature dim will be 512.
From the results, we could observe that our method could outper-
form the baselines on most generalization tasks and on average
þ1:6% accuracy improvement.

Then, we implement ablation studies on each component of our
algorithm. We report the empirical results of ablation studies in
Table 7, where we test the ablation studies on both the AlexNet
backbone and ResNet-18 backbone. We compare the ablations
by, (1) Deep All: Train the model using feature extractor on source
domain datasets with classification loss only, that is, neither opti-
mal transport nor metric learning techniques is adopted. (2) No
LD: Train the model with classification loss and metric learning
loss but without adversarial training component; (3) LMS w.o.
wþ: omit the positive weighting scheme in LMS (4) LMS w.o. w� :
omit the positive weighting scheme in LMS. (5) No LMS: Train
the model with classification loss and adversarial loss but without
metric learning component; (6) WADG-All: Train the model with
full objective Eq. 14.

From the results, we could observe that one we omit the adver-
sarial training, the accuracy would drop off rapidly (� 3:5% with
AlexNet backbone and � 5:8%with ResNet-18 backbone). The con-
tribution of the metric learning loss is relatively small compared
with adversarial loss. Comparing the ablations LMS w.o. wþ and
LMS w.o. w�, we could observe almost similar accuracy. This indi-
cates that the positive and negative weighting scheme of the met-
ric learning objective may have equivalent contribution.. Once we
omit the metric learning loss, the performance will drop � 2:1%
and � 2:5% with AlexNet and ResNet-18 backbone, respectively.

Then, to better understand the contribution of each component
of our algorithm, the T-SNE visualization of the ablation studies of
each components on PACS and VLCS dataset are represented in
Fig. 4 for the generalization task of target domain Photo. and
Fig. 5 for the generalization task of target domain Caltech, respec-
tively. Since our goal is to not only align the feature distribution
but also encourage a cohesion and separable boundary, in order
10
to show the alignment and clustering performance, we report the
t-SNE features of all the source domains and target domain to show
the feature alignment and clustering across domains.

For PASC dataset, as we can see, the t-SNE features by Deep All
could neither project the instances from different domains to align
with each other nor cluster the features into groups. The t-SNE fea-
tures by No LD showed the metric learning loss could to some
extent to cluster the features, but without the adversarial training,
the features could not be aligned well. The T-SNE features by No
LMS showed that the adversarial training could help to align the
features from different domains but could not have a good cluster-
ing performance. The T-SNE features by WADG-All showed that the
full objective could help to not only align the features from differ-
ent domains but also could cluster the features from different
domains into several cluster groups, which confirms the effective
of our algorithm.

As for the VLCS dataset, we could observe similar performance
on the t-SNE on the VLCS dataset while the features are somehow
overlap with each other. This is due to the features in Caltech
domain is somehow easy to learn and predict. As also analyzed
in [20], a supervised model on Caltech domain could achieved
� 100% accuracy, which also confirms that the features in Caltech
domain is easy to learn indicating the features might be more
likely overlapping with each other. As we can see from Fig. 5d,
the WADG method could help to separate the features with each
other, which again confirms the effectiveness of our proposed
method.
6. Conclusion

In this paper, we proposed the Wasserstein Adversarial Domain
Generalization algorithm for not only aligning the source domain
features and transferring to an unseen target domain but also
leveraging the label information across domains. We first adopt
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optimal transport with Wasserstein distance for aligning the mar-
ginal distribution and then adopt the metric learning method to
encourage a domain-independent distinguishable feature space
for a clear classification boundary. The experiment results showed
our proposed algorithm could outperform most of the baseline
methods on two standard benchmark datasets. Furthermore, the
ablation studies and visualization of the t-SNE features also con-
firmed the effectiveness of our algorithm.
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